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Abstract 
 

Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the 
two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the 
phase changes of material (solid-liquid and liquid-vapour) and the ablation process.  At the stage of numerical computations the finite 
difference method with staggered grid is used. In the final part the results of computations are shown. 
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1. Introduction 

The ablation of the axisymmetric micro-domain subjected to 
the ultra-short laser pulse is considered. Two-temperature 
hyperbolic model with nonlinear physical parameters is used. 
This model consists of equations describing the temporal and 
spatial evolution of the lattice and electrons temperatures, lattice 
and electron heat fluxes and also the isothermal solid-liquid (or 
liquid-vapour) phase change. The algorithm based on the 
explicit scheme of the finite difference method with the 
staggered grid is proposed. In the final part the results 
concerning the ablation process are presented. 

2. Governing equations 

Axisymmetric domain exposed to the ultra-short laser pulse 
is considered. Two-temperature model describing the temporal 
and spatial evolution of the lattice and electrons temperatures is 
of the form [1]  
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where Te =Te (r, z, t), Tl =Tl (r, z, t), qe=qe (r, z, t), ql =ql (r, z, t) 
are the temperatures and heat fluxes of the electrons and lattice, 
respectively, Ce(Te), Cl are  the  volumetric  specific  heats, 
G(Te, Tl) is the electron-phonon coupling factor, Q(r, z, t) is the 
source function associated with the irradiation, while Qm(r, z, t) 
and Qev (r, z, t) are the source functions associated with the 
melting and evaporation, respectively. For low laser intensity, 
when the lattice temperature does not exceed the melting point 
the functions Qm (r, z, t) and Qev (r, z, t) are equal to zero, of 
course. 
Between the heat fluxes and temperature gradients the follow-
ing formulas are introduced 
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where λe=λe(Te, Tl), λl are the thermal conductivities of the elec-
trons and lattice, respectively, τe is the relaxation time of free 

electrons in metals, τl is the relaxation time in phonon collisions 
and ∇(·) denotes the gradient. 
It should be noted that for high laser intensity the volumetric 
specific heat and thermal conductivity of electrons as well as 
the coupling factor are temperature-dependent functions [1, 2].  
The laser irradiation is described by a source term introduced in 
the equation (1) [3] 
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where I0 is the laser intensity, tp is the characteristic time of la-
ser pulse, δ is the optical penetration depth, R is the reflectivity 
of the irradiated surface and rD is the laser beam radius. 

The internal heat sources resulting from the phase changes 
(melting and evaporation) take a form 
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where Lm is the volumetric heat of fusion, Lev is the volumetric 
heat of evaporation, Sm and Sev are the volumetric molten and 
gaseous state fractions in the surroundings of the point consid-
ered. Both Sm and Sev are equal to zero at the beginning of heat-
ing process and increase from 0 to 1 when the local temperature 
achieves the melting Tm and boiling Tev temperatures, respec-
tively.  
The ablation effect is modeled in this way that when at the point 
considered the value  Sev exceeds 1 then the sub-domain corre-
sponding to this point is removed, while the appropriate bound-
ary conditions are transferred to the new external boundary. 
The above presented mathematical model is supplemented by 
the boundary conditions (no-flux conditions), it means 
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where n is the outward unit normal vector. 
The initial temperature distribution is also known 
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where T0 is constant. 
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3. Method of solution and results of computations 

In the cylindrical coordinate system 
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and then the equations (1), (2) take a form 
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To solve the equations (7) – (10) the  explicit  scheme  of 
finite difference method with the staggered grid, as shown in 
Figure 1, is used. The details of the algorithm will be presented 
in the full version of the paper. 

 
Figure 1: Staggered grid 

 
When the local lattice temperature Tlij 

f  at the node (ri , zj) and at the 
moment  of  time  t 

f   achieves  the value  of  melting  point  Tm  
(Tlij 

f  
≥Tm) then in the sub-domain r ∈ [ri,j−1, ri,j+1], z ∈  [zi−1,j, 

zi+1,j] the melting process starts. It is assumed that the melting 
process proceeds at the constant temperature  and then the left-
hand side of equation (9) is equal to zero. Using the dependence 
(4) the appropriate difference equation which determines the 
value Sm i j 

f  can be derived. When the function Sm i j 
f  reaches the 

value 1 then the melting process is finished and the calculations 
are performed based on equation (9) under the assumption that 
Qm= Qev

 =0. Next, when the local lattice temperature Tlij 
f  achieves 

the value of boiling point Tev  then using the dependence (4) the 
value Sev i j 

f (in a similar way as in the case of melting)  can be 
calculated. Finally, when the function Sev i j 

f  reaches the value 1 
then the sub-domain considered is removed, while the appropriate 
boundary conditions were transferred to the new external 
boundary.  

The cylindrical domain (R = 100·10−9 m, Z = 100·10−9 m) 
of the initial temperature Tp = 300 K subjected to the short-pulse 
laser heating is considered. Thermophysical parameters for gold 
are taken from [1, 2].  

The laser beam radius is equal to rD =R/8. To observe heat-
ing, melting, evaporation and ablation process the value of laser 
intensity  I0 =1.5·106 J/m2 is assumed and the characteristic time 
of laser pulse is equal to tp =100 ps. Calculations are made for 
50×50 = 2500 (h = 2 nm) ‘temperature nodes’,  time step is 
equal to 0.001 ps. 
Figure 2 presents the domain with ablated part (color black) for 
two different moments of time, namely 300 ps and 400 ps.  

 

       
 

Figure 2: Domain with ablated part at the moments of time  
300 ps and 400 ps 
 

 
 
Figure 3: Temperature distribution for time equals 250 ps 

 

4. Conclusions 

Numerical model of melting, evaporation and ablation processes 
proceeding in the domain subjected to the laser heating is 
presented. In should be noted that depending on the laser power 
only the melting process or only the heating process in the domain 
considered can be observed. 
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