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Abstract 
 

In this paper the reliability assessment of buckling resistance of steel beam is presented. A number of parameters such as: the 
boundary conditions, the section height to width ratio, the thickness and the span are considered. The examples are solved using FEM 
procedures and formulas proposed in the literature and norms. In the case of the numerical models the following parameters are 
investigated: support conditions, mesh size, load conditions, steel grade. The numerical results are compared with approximate 
solutions calculated according to the standard formulas. It was observed that for high slenderness section the deformation of the 
cross-section had to be described by the following modes: longitudinal and transverse displacement, warping, rotation and distortion 
of the cross section shape. In this case we face interactive buckling problem. Unfortunately, neither the EN Standard nor the subject 
literature gives exact formulas to solve these problems. For this reason the reliability of the critical bending moment calculations is 
discussed. 
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1. Introduction 

The fact that steel structures are apt to fail by loss of 
stability belongs to the textbook’s knowledge for decades. This 
tendency towards instability is a direct consequence of high 
slenderness of steel structural elements. Designers can find 
practical recommendations in design codes with theoretical and 
experimental background in the literature [4] how to overcome 
the problems of instability. Professional computer programs 
supporting design of steel structures implement many of these 
recommendations. However, modern light-weight steel 
structures gave rise to new stability problems [3]. Application 
of thin-walled cold formed sections and welded I sections with 
slender webs increased the importance of local instability 
phenomena which often appeared at a similar load level as 
global instability. The case when two or more different modes 
in stability and dynamic analyses are associated with the same 
or similar eigenvalues is termed a bimodal or multimodal 
solution. Designers’ concern is that these solutions are very 
sensitive to imperfections [1]. Design codes contain 
recommendations with respect to global, local and distortional 
buckling, which can be taken into account separately. There is 
definitely not so much information about interactive buckling. 
Therefore the question of the reliability assessment of buckling 
resistance of steel beams is still unresolved issue. 

2. Problem formulation 

The primary objective of this work was to analyse the 
reliability of the critical bending moments for simply supported 
steel beams based on Vlasov beam theory using analytical 
procedures specified in the norms and Finite Element Method 
solving eigenvalue problem by application of a beam element 
with 7 degrees of freedom and shell elements. 

The general theory of stability of a thin-walled bar with 
open cross-section was formulated by W. Z. Vlasov [2] basing 
on the following assumptions: a non-deformable contour, plane 
stress state, external load passes through the shear center of the 
bar. Using the equilibrium conditions describing the behavior of 

the bar, which switches from flexural to flexural-torsional 
equilibrium state, Vlasov derived the set of three differential 
equations of fourth order describing the global stability problem 
of thin walled beams.  

Design of steel beams is highlighted by code EN-3. The 
first step in the procedure recommended in this code is 
assessment of critical buckling load. The code provides closed 
form formulas for critical buckling moment in several cases 
most often met in practice. The formulas stem from Vlasov 
theory. They are also implemented in common computer 
programs supporting the design. However, practical design 
engineers often meet problems beyond the set of cases specified 
in the code. Designers are not sure whether the critical bending 
moment incorporated in design procedure in EC-3, can be 
assessed using advanced FEM programs, when shell or solid 
elements are implemented. Stability analysis using these types 
of elements is not limited by Vlasov assumptions, hence 
different results can be expected. Erroneous values of critical 
buckling loads may result in unsafe or too conservative designs.  

3. Numerical examples 

The analyses included two different types of cross-sections 

namely IPE 300 and thin-walled 300x2 profile, various beam 
spans (3m, 6m, 12m) and load cases. There were considered 
uniformly distributed load, concentrated force in the middle of 
the beam span and bending moments imposed at the ends of the 
beam. Theoretical boundary conditions (so-called fork support) 
and solutions of simply supported beam, commonly used in 
engineering practice were taken into account (Fig. 1). Moreover 
the discussion of the problems concerning the numerical 
modeling of such boundary conditions was performed. In order 
to verify the reliability of the procedures available to 
computation the critical bending moment based on beam and 
shell theory was used. In first part of the study the critical 
bending moment was calculated using analytical procedures 
based on Vlasov beam theory included in the App. 1 to Polish 
Standard PN 90/B 03200 (Mcr,ref) and supplementary 
information to the Eurocodes - SN003a-EN-EU (Mcr,1). The 
results of this analysis will be used as the reference values. In 
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the second part, the critical bending moment was calculated 
using FEM solving eigenvalue problem by application of a 
beam element with 7 dof. in LTBeam program (Mcr,2) and shell 
elements S4R in Abaqus program (Mcr,3). It is worth to mention 
that beam element with 7 dof. so-called Vlasov beam element 
allows consideration of warping, while shell element 
deformation of the contour and thus local buckling. In case of 
shell model the mesh sensitivity was carried out. It proved that 
the model is sensitive to the adopted size of finite element. It 
follows that recommended size was approx. 1 cm (Fig. 2). 

 

Figure 1: FEM model of 300x2 profile a) overall view of shell 
model, b) engineering solution of simply support conditions 

 

 

 
 
 
 
 
 
 
 
 

Figure 2: FEM model of IPE 300 a) overall view, b) shell 
element grid size, c) lateral torsional buckling mode 

4. Results of calculations 

In this paper, a number of comparative studies have been 
done, among which only four examples of critical bending 
moment calculation are presented in Figure 3 and 4. 
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Figure 3: Mcr,i/Mcr,ref values for I cross-section and different 
calculational methods 

SN003a EN-

EU
LT Beam

Abaqus 

(Shell) 

M cr,1 /M cr,ref M cr,2 /M cr,ref M cr,3 /M cr,ref 
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Figure 4: Mcr,i/Mcr,ref values for  cross-section and different 
calculational methods 

The results of calculations obtained by analytical methods 
contained in standards and from the LTBeam program can be 
considered in most cases to be the equivalent. Whereas the 
results got using the shell model allow for a more advanced 
buckling analysis and enables the resignation of the classic 
Vlasov theory assumptions. Moreover it allows the contour 
deformation an global/local interactive buckling analysis as 
well. A very important observation is that using the shell model 
always lower values of critical bending moment are obtained. 
This proves that it is more secure estimation than based on the 
beam model. One can notice that in the case of stocky elements 
this difference grows with increasing span of beams, while for 
cross-section class 4 difference it is greater for shorter span of 
beams. 

5. Concluding remarks 

Expected and yet interesting was the observation that the 
FEM analyses with Vlasov beam elements using different 
computer programs provided the critical buckling moment in 
excellent agreement with the closed-form formulas given in 
EC - 3. Application of shell elements to beams with I and ∑ 
sections provided slightly lower critical buckling moments. It 
would result in slightly conservative design of beams. 
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