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Abstract

The paper deals with the minimum compliance problem of 2D structures made of a non-homogeneous elastic material. An optimum
design is found for a selected design domain and a single load case. In the first part of the paper comparison between solutions of
Free Material Design(FMD), Cubic Material Design(CMD) and Isotropic Material Design(IMD) is shown for simply supported plane
structure subjected to a concentrated force. The isoperimetric condition fixes the value of the cost of the design expressed as the integral
of the trace of the Hooke tensor. In the second part of the paper the material design approaches are extended to rhombic system in
2D. For the rhombic system the material properties of the structures are set, the design variables being the trajectories of anisotropy
directions which in 2D are described by one parameter. In Orthotropic Orientation Design (OOD) no isoperametric condition is used.

Keywords: topology optimization, cubic material design, orthotropic orientation design

1. Introduction

The aim of the material design is to construct - within a given
feasible domain - the stiffest structure capable of transmitting a
given load to a given boundary support by appropriate choice of
the material characteristics. FMD in its original formulation in-
volves no restrictions on the components of the Hooke tensor,
apart from necessary symmetries and positive semi-definiteness
conditions. The isoperimetric condition fixes the value of the cost
of the design expressed as the integral of the trace of the Hooke
tensor. A natural extension of FMD is a priori imposing certain
material symmetries. The strongest assumption is isotropy-this
modification has been proposed by Czarnecki and Wawruch [1]
and it is called the Isotropic Material Design (IMD). In this for-
mulation only design variables are the bulk k and shear µ moduli
in each point of the feasible domain. However, the real bodies
are usually not isotropic. A natural extension of the IMD method
towards designing of new materials or describing available ma-
terials is an approach proposed by Czubacki and Lewiński[2] in
which the material is viewed as endowed with a microstructure
of cubic symmetry. The total compliance of the structure is ex-
pressed by the Castigliano formula:

Y = min
τ∈Σ(Ω)

∫
Ω

τ ·(C−1τ ) dx (1)

where Σ(Ω) is a set of statically admissible stress fields and the
form of the Hooke tensor C differs for anisotropy(FMD), cubic
symmetry(CMD) and isotropy(IMD).

Due to an exceptional mathematical structure of the minimum
compliance problems(FMD,CMD,IMD) it is possible to elimi-
nate all design variables, which leads to an auxiliary problem of
the form:

Z = min


∫
Ω

|||τ |||dx

∣∣∣∣∣∣ τ ∈ Σ(Ω)

 (2)

The latter problem is expressed by the load, kinematic boundary
conditions and the design domain.

The integral in (2) for IMD and CMD reads:

|||τ ||| = α|trτ |+ β‖devτ‖ (3)

where trτ is the trace of τ , devτ is the deviator of the stress and
α, β are respectively equal to:

√
2/2,

√
2 for IMD, and

√
2/2,

1 for CMD. Due to the similarity of CMD and IMD methods a
stress field which minimizes (2) can be found by using the nu-
merical algorithm described in Czarnecki and Wawruch [1].

The minimal compliance is expressed with the formula:
Z2/Λ in which Z is a number expressed by the minimization
problem (2) and Λ is the integral of the trace of the Hooke tensor.

2. Case study: a simply supported deep beam under a single
force load

Numerical computation of simply supported structure shown
in Fig.1a is performed to compare optimal compliances obtained
by three methods: FMD, CMD and IMD.

Table 1: The comparison of the optimal relative compliances

Mesh FMD CMD IMD
80x20 12.01 22.39 34.74
40x10 12.34 22.95 34.90

In Fig.1b,c the optimal layouts of moduli a and c cf.[2] of the
cubic material are presented. In Table 1 total relative compliance
of the structure for different meshes and different methods are
compared. It can be seen that the smallest compliance is obtained
by FMD, this is because FMD has no restrictions on the com-
ponents of the Hooke tensor, apart from necessary symmetries
and positive semi-definiteness conditions, which leads to better
adaptaion of FMD structure to transmit the load to the boundary
than other methods. On the other hand the compliance obtained
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by IMD - for which the strongest assumption is imposed on the
Hooke tensor - is the highest.

(a) Geometry of the problem Lx = 0.4L, Ly = 0.1L.

(b) elastic modulus a/E0.

(c) elastic modulus c/E0.

Figure 1: Geometry and the optimal layouts of moduli obtained
by CMD; E0 = Λ/|Ω|.

3. Rhombic system or orthotropy

The aim of this part of the paper is to put forward the Or-
thotropic Orientation Design(OOD) in which material of the
structure has orthotropic properties. It this work 2D case of OOD
is delivered. The main difference between the material design
problem and OOD is that in OOD elastic material moduli a, b,
c, l are set a priori, which implies that in this formulation no
isoperimetric condition is used. At each point of the structure the
orientation of the material defined by a pair of mutually orthogo-
nal unit vectors (n,m) are to be determined. The Hooke tensor of
a material of rhombic symmetry is represented by the celebrated
formula by Walpole[4]:

A = aU11 + bU22 + c(U12 +U21) + lV (4)

where a > 0, b > 0, ab− c2 > 0 , l > 0 and fourth-rank tensors
U11, U22, U12, U21, V are defined as follows:
(U11)ijkl = ninjnknl, (U22)ijkl = mimjmkml

(U12)ijkl = (U21)ijkl = ninjmkml

Vijkl =
1

2
(minj + nimj)(mknl + nkml)

(5)

The spectral representation of the inverse ofA reads:

A−1 = a1U11 + b1U22 + 2c1U12 +
1

l
V (6)

where a1 = b/d, b1 = a/d, c1 = −c/d and d = ab− c2.
The minimum compliance problem of the OOD is formulated

as:
for given elastic moduli a, b, c, l find the orthogonal trajectories
of the vector fields (m, n) at each point of the feasible domain
Ω, such that the structure is characterized by the smallest total
compliance among all structures designed in the same feasible
domain and capable of transmitting the same load to the same
boundary.

By replacing tensorC−1 byA−1 in (1) we express the total
compliance of the structure made of orthotropic material. Upon

the change of τ into σ the integrand in (1) can be written as:

σ.A−1σ = a1(σn)2 + b1(σm)2 + 2c1σnσm +
2

l
σmn (7)

where σn = σijninj , σm = σijmimj , σmn = σijnimj .

Let σ1, σ2 are principal stresses,
1
e,

2
e being the unit eigenvec-

tors. Thus,

σn = (σ1
1
ei

1
ej +σ2

2
ei

2
ej)ninj = σ1x

2 + σ2y
2

σm = σ1y
2 + σ2x

2, σmn = xy(σ2 − σ1)
(8)

where x = (n· 1
e) = (m· 2

e) and y = (n· 2
e) = −(m· 1

e)
By substituting (8) into (7) one gets:

W (σ, x, y) = σ.A−1σ = a1(σ1x
2 + σ2y

2)2+

b1(σ1y
2 + σ2x

2)2 + 2c1(σ1x
2 + σ2y

2)(σ1y
2 + σ2x

2)+

2

l
x2y2(σ2 − σ1)2

(9)

Since x2 + y2 = 1 only one parameter x ∈ [0, 1] may be
used to calculate the optimal orientation of the material. It can be
easily proven that minimum of W is obtained either for x = 0
or x = 1, which means that optimal orientation of the material
coincides with the directions of principal stresses.

Thus, for the Orthotropic Orientation Design (2) one obtains:

Z = min
τ∈Σ(Ω)

∫
Ω

F (τ ) dx (10)

For the case of a1 > b1 the integrand F (τ ) equals:

F (τ ) =

{
W (τ ; 1, 0) if τ1 > τ2
W (τ ; 0, 1) otherwise (11)

For the case of a1 < b1 the integrand in (10) should be changed
appropriately.

4. Conclusions

The method described in the paper may be used for 3D print-
ing, see the paper by Zegard and Paulino [5] in which alternative
topology optimization methods have been adopted.

The problem (10), (11), which is the key towards OOD, has
similar mathematical structure to the compliance optimization
problem concerning the materials with constitutive laws being
dissymmetric with respect to tension-compression [3].
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