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Abstract

The paper consiedrs the influence of the assumed error indicator on the final adapted mesh. Provided that error threshold values of error
are increased by applying the adaptive procedure it turns that final mesh depends on the assumed error indicator. In the paper there
were used standard error estimates and the error indicator proposed by the author. The proposed error indicator is based on applying
hierachically generalized finite diferrence method (FDM). In case of the proposed eror indicator the final one is more "suitable" to the
strict solution.

Keywords: mesh generation, mesh size function, mesh adaptation, remeshing, error indicator

1. Introduction

The subject of the paper is an analysis of the impact of final
adapted mesh on the error indicator assumed by the author. The
applied method is of remeshing type and for every adaptation step
a completely new mesh is generated. For mesh generation the
computer code GRADMESH [3, 4] was applied. The generator
uses mesh size function [6] defined in the whole domain includ-
ing the boundary.

For the sake of the numerical simulations the infinite space is
approximated by a finite dimensional space generated by a given
set of basis functions, the approximated solution to the problem
is equal to a linear combination of the basis functions. The co-
effiecients of the linear combination are found from the solution
of a nonliner algebraic system of equations. The system is car-
ried out from stationarity conditions. The system of nonlinear
algebraic equations is solved by the Newton-Raphson method.

In the case of standard error indicators [2, 8] the values of
erros at elements are led to nodes as weighted averages taken at
elements. In consequtive steps of the remeshing algorithm the
values of the mesh size function at the nodes are modified in the
way that at the points with greatest values of the error indicators
the values of mesh size function are the most reduced. Having
the values of the mesh size function at nodes the new mesh size
function is defined in the whole computational domain by the lin-
ear interpolation. The process is performed till the error indicator
attains assumed value. In case of the error indicator proposed by
the author values of the errors are found directly at every node by
applying the finite difference method in the hierarchical way.

2. Error indicators

The applied indicators [1] are calculated directly for every
node, not in elements like in [5, 7]:
Let ei for i = 1, . . . , nν be an error indicator at i-th apex of the
mesh Tν , and Pν={ Pi, i = 1 ,. . . , nP } − set of nodes. We
define a set of numbers of a patch of elements for every node Pi

as:

Li = {k : nodePi ∈ T k} for i = 1, . . . , nP (number of points).

(1)
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cretized form of the considered equation. At every node

partial derivatives are found
∂uh

∂x
,

∂uh

∂y
,

∂2uh

∂x2 , . . . accord-

ing to the folowing recipe:

Having found uh(Pi) for i = 1, . . . , NP , the hierachical
formula is applied:

∂uh

∂x
(Pi) =

P

k∈Li

∂uk

h

∂x
(Pi)area(Tk)

P

k∈Li
area(Tk)

(2)

where uk
h is the restriction of the approximate solution to

the k-th element. As the restriction of uk
h of the solution

uh to the k-th element is a linear combination of shape
functions of the k-th element, then:

u
k
h =

ne
X

j=0

λjN
k
j , what gives

∂uk
h

∂x
=

ne
X

j=0

λj

∂(Nk
j )

∂x

(3)

where Nk
j is a shape function of the k-th element and λj

are the the coefficient of the linear combination with ne

degrees of fredom of the e-th element. Formula (3) is ap-
plied at nodal points. The derivatives found in that way
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(Pi), i = 1, . . . NP are used for calculation of the

second order derivatives at the nodes in the similar way by
using the recurrent formulas:
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2. In the case of the below error indicator it is suggested to
evaluate directlty the values of the derivatives of the error
indicator at every node of the mesh (in the case of first or-
der approximtion) in the following way:

ei =

s

X

k∈Li, l∈Li, l6=k

(
∂ui

∂x
−

∂uk

∂x
)2 + (

∂ui

∂y
−

∂uk

∂y
)2,

(5)

where Li is the set of numbers of elements meeting at i-th
node.
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3. The algorithm of remeshing based on grid generator

The algorithm of remeshing can be divided into the following
steps:

1. Preparation of the information about the geometry and
boundary conditions of the problem,

2. Fixing an initial mesh size function,

3. Mesh generation with the mesh size function,

4. Solution to the considered problem on the previously gen-
erated mesh,

5. Evaluation of error indicator in every element,

6. Calculation of nodal error indicator values by using aver-
age method,

7. Definition of the new mesh size function using the errors
computed at every point,

8. If error not satisfactory go to point 3.,

9. End of computations.

The applied indicators are calculated for every element or directly
at the nodes [3, 4].
Let ei for i = 1, . . . , n0 be an error indicator at i-th apex of the
initial mesh T0, with P0={ Pi, i = 1 ,. . . , nP } − set of nodes.

The modification of the mesh size function is performed at
every adaptation step to perform the upcoming one. The main
idea of this part of the algorithm relies on reduction of the values
of the mesh size function by an appropriately chosen function.
The chosen function is continuous, linear and its smallest value
is at the node of the maximum error indicator and the greatest
value where the error is minimum. The function increases due to
the error decrement.

4. Modification of the mesh size function

Having got the values of the erors at the nodes of the mesh
on which the considered approximate ẽi solution is obtained we
define:

α = min
k=1,2,...,NNOD

ẽk, β = max
k=1,2,...,NNOD

ẽk, (6)

where NNOD is the number of nodes.
Then the folowing values are introduced:

λ − a value indicating the greatest mesh size function reduction,

µ − a value indicating the smallest mesh size function reduction.

The following transformation is defined

l : [α, β] 7→ [µ, λ] (7)

which satisfies the conditions: l(α) = λ and l(β) = µ. Provided
that

Qi = l(ẽi) for i = 1, . . . , NNOD, (8)

then one has: mini=1,2,...,NNOD
Qi = µ,

maxi=1,2,...,NNOD
Qi = λ.

Introducing the function r : D 7→ IR as follows: r(x) =

Π(x), if x ∈ T s, where Π is an affine mapping of two variables,
satisfying the following equalities:

Π(Pi) = Qi for i = 1, 2, 3, (9)

where P1, P2, P3 are the vertices of the triangle Ts of the tri-
angulation of Ω, and appropriately Q1, Q2, Q3 are the values
defined by the formula (8). A bar means closure of the domain.
The function r(x) is defined in the whole domain because the tri-

angles {T s}
ne

s=1 cover it. The new mesh size function is defined
as follows:

γi+1(x) = γi(x)r(x). (10)

4.1. Numerical Examples

Final mesh for example problem with known solution:
u(x, y) = x(1 − x)y(1 − y) arctan(a(x+y√

2
− ξ)), with pa-

rameters a, ξ for the Laplace equation.

Figure 1: The final adapted mesh for the examplary problem.

5. Conlusions

Numerical experiments show that the final mesh generated in
adaptation process obtained by using error estimates based on fi-
nite difference method is more optimal and better matches to the
exact solution.
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