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Material point analysis of three-dimensional silo flow problem
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Abstract

Three-dimensional problem of granular flow in a silo has been considered. To solve such a large strain problem, the material point
method has been applied. An example of granular flow in a silo of quadrilateral cross-section with a convergent hopper has been shown.
The numerical results have been compared with the experimental ones; good agreement between both the outcomes has been obtained.
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1. Introduction

Gravitational flow of a granular material in a silo has been
considered. Finding the flow pattern and interactions between
the flowing material and silo walls and evaluation of flow rate
are interesting from the engineering view point. In the anal-
ysis, the granular material has been treated as a solid body—
an elastic–viscoplastic, non-associative material model with the
Drucker–Prager yield condition has been utilised. The dynamic,
large strain problem has been solved by the use of the material
point method (MPM). The method was applied successfully to
large strain problems of solid mechanics, e.g. [2, 4]. The stan-
dard finite element method (FEM) formulated in the Lagrangian
description of motion is not a sufficiently robust tool for analysis
of the full process of silo discharge due to large mesh distortions
which deteriorate the accuracy of the approximate solution. A
mesh re-zoning technique aided to the Lagrangian approach is
not a comprehensive remedy to overcome the problem as it need
mapping state variables from the distorted mesh to a newly gen-
erated one which is an additional source of computational inac-
curacies. In the material point method, state variables are traced
at a set of points (called material points) representing subregions
of the analyzed body on which the region initially representing
the body is divided. The state variables are calculated by the use
of a finite element mesh (called a computational mesh) which can
be defined in a arbitrary way which means that mesh distortions
are avoided. Due to the fact that two kinds of spatial discreti-
sation are used—material points and a computational mesh—the
method reveals features of an arbitrary Lagrangian–Eulerian de-
scription of motion which makes the method very flexible in ap-
plications. Such problems like self-contact of the granular mate-
rial and flow around obstacles (inserts, e.g. [4]) are much easier
to solve than in the case of other methods.

2. Problem description

The problem of silo flow is formulated as a dynamic one. The
initial displacement and stress fields caused by the gravity forces
are found by the solution of the corresponding quasi-static prob-
lem.

The elastic–viscoplastic constitutive relations have been used
to model the mechanical behaviour of the granular material. The
Drucker–Prager yield condition and a non-associative flow rule
implying the plastic incompressibility of the material are ap-

plied in the constitutive model. Let f denote the yield function
f(σij) = q −mp − k, where m = 18 sinϕ/(9 − sin2 ϕ) and
k = 18 c cosϕ/(9−sin2 ϕ) are functions of the angle of internal
friction, ϕ, and cohesion, c, p and q are invariants of the stress

tensor, p = − 1
3
σii, q =

√
3
2
sijsij , where sij = σij + p δij

denotes the deviatoric part of the stress tensor. The constitutive
relations for the elastic–viscoplastic model are as follows:

ṗ = K dkk, ee
ij =

1

2G

∇
sij , evp

ij = γ 〈Φ(f)〉 ∂g
∂sij

(1)

where g ≡ q is the plastic potential. The following notation is
used above: dij = 1

2
(vi,j + vj,i) is the rate-of-deformation ten-

sor, ee
ij and evp

ij are parts of its deviator, eij = dij − 1
3
dkk δij ,

the elastic and plastic ones, respectively,
∇
σij = σ̇ij − σik ωkj −

σjk ωki is the Zaremba–Jaumann rate of the stress tensor, ωij =
1
2

(vj,i − vi,j) the spin, K and G are the bulk and shear moduli,
respectively. Symbol γ in Eq. (1) denotes the viscosity param-
eter while the function defining the law of plastic flow has the
following form:

Φ (f(σij)) =

(
q −mp− k
mp+ k

)N
, N > 0,

〈Φ(f)〉 = Φ(f) if f > 0 and 〈Φ(f)〉 = 0 othewise.

3. Material point solution

The considered problem is solved by the use of the material
point method, where—as in the standard finite element method—
the principle of virtual work is the starting point for the formula-
tion of the method. The equation of virtual work has the follow-
ing form:∫

Ω

(% ai wi + σijwi,j) dx =

∫
Ω

% bi wi dx+

(2)∫
Γσ

ti wi ds+

∫
Γc

σij nj wi ds ∀w ∈ V0

where V0 denotes the space of kinematically admissible fields of
displacements, Γσ the part of boundary Ω where tractions are
given, and Γc the part of the boundary where the frictional con-
tact problem is to be solved; the friction phenomenon is described
by the Coulomb model. Let us introduce a division of the region
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occupied initially by the analysed body into a set of subregions—
each of them represented by one of its points called a material
point. We assume that the mass density field is expressed as fol-
lows: %(x) =

∑N
P=1 MP δ(x −XP ), where MP and XP de-

note the mass and the position of the P th material point, δ(x) is
the Dirac δ-function. Besides this space discretisation (of La-
grangian type), another one—an Eulerian finite element mesh
(called a computational mesh) covering the virtual position of the
analysed body—is also used. This mesh can be changed arbi-
trarily during calculations or remain constant. After substituting
mass density representation to the equation of virtual work (2)
and expressing the field of acceleration, ai, and the weight func-
tions, wi, by the shape functions and nodal parameters, defined
on the computational mesh, as in the finite element method, we
obtain the following system of dynamic equations:

Ma = F + Fc −R, (3)

where M is the mass matrix, a the vector of nodal accelerations,
F, Fc and R are the vectors of external, contact and internal
nodal forces, respectively. The main difference between FEM
and the material point method follows from the fact that the state
variables are traced at the material points, defined independently
of the computational mesh in MPM, and at integration points con-
nected with elements in FEM. The system of dynamic equations
(3) is solved by means of the explicit time integration procedure.
The details of the computations have been given in [3, 4].

4. Example

The process of silo discharge for a silo of rectangular horizon-
tal cross-section with convergent hopper has been analysed. The
silo geometry is shown in Fig. 1. Computations have been made
with the following values of dimensions indicated in the figure:
A = 3 m, B = 4 m, a = b = 1 m, h1 = h2 = 1 m. The follow-
ing material data have been set: mass density, % = 1800 kg/m3,
E = 1 · 106 Pa, ν = 0.3, ϕ = 30◦, c = 0 Pa, γ = 50 s−1,
N = 1. It has been assumed that the silo walls are smooth. As
the silo has two symmetry planes, only one its quarter has been
considered in the calculations.

Figure 1: Silo with convergent hopper

The initial fields of displacements and stresses caused by
the gravitational forces have been found solving the quasi-static
problem for the silo with the closed outlet as a dynamic prob-
lem using the method of dynamic relaxation. This approach has
allowed to avoid solution of a huge system of non-linear equa-
tions. A small value of viscosity parameter γ = 5 s−1 and an
extra viscosity term in the pressure rate–volumetric strain rela-
tion, ṗ = −K dkk − µdkk with µ = 1 · 105 Pa·s, have been
applied in the relaxation procedure.

To discretise one quarter of the analysed region, 6052 nodes
and 26652 tetrahedral elements with linear interpolation func-
tions have been defined in the computational mesh. The bulk
material has been modelled by 221608 material points. Using the
explicit time integration procedure, the time increment has been
set as 5 · 10−4 s for t ≤ 14.7 s and 1 · 10−4 s for t > 14.7 s.

Several phases of the flow process are shown in Fig. 2. The
mass flow has been observed in the silo. Significant distortions
of the material could be seen in the figure.

Figure 2: Several phases of silo discharge process for time values:
0 (static), 3, 5, 7, 9, 11, 13, 14.5 s

The flow rate for the bulk material has been calculated and
compared to the value following from the empirical formula by
Beverloo et al. [1]

W = 1.0444 % (a− kd) (b− kd)

√
g

(a− kd) (b− kd)

a+ b− 2kd

where g is the gravity acceleration, d grain diameter and k ≥ 1.
The comparison is illustrated in Fig. 3. Quick stabilisation of the
flow rate has been obtained in the calculations as observed in the
experiment [1]. The value of the calculated flow rate matches
fairly well the empirical value.

Figure 3: Flow rate

5. Conclusions

A three-dimensional flow of a bulk material during an en-
tire silo discharge process has been analysed successfully by the
material point method. The calculated flow rate of the granular
material has shown very good agreement with the experimental
results related to its value and time distribution.
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