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Abstract

The paper investigates and shows the efficiency and accuracy of the Craig-Bampton model order reduction method on the analysis of
a cantilever beam and rod with harmonic excitation. The results of different finite element- and Craig-Bampton models are compared

to the analytic continuum vibration results as reference.
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1. Introduction

In the engineering praxis, the aim for better computation
accuracy and shorter calculation time of dynamics problems are
even higher nowadays. To achieve this aim, a model order
reduction (MOR) method can be used. Using a MOR method,
the dimension of equation-system of motion can be
substantially decreased, while the significant characteristics of
the system remain. In the literature, e.g. in Ref [4], a lot of
MOR methods can be found, out of which, the most widespread
in the industry is the Craig-Bampton method, which is a
combination of the static- and modal reduction. This paper
introduces this method, and shows its efficiency and accuracy
on the vibration analysis of a cantilever beam and rod.

2. Problem description

To demonstrate the efficiency and accuracy of the Craig-
Bampton method, let’s consider a cantilever beam (case 1) and
a rod (case 2), acting a vertical (case 1), and axial (case 2)
concentrated force on it, shown in Fig. 1.
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Figure 1: The beam and rod model
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The objects of the analysis are as follows:

1) To apply the Craig-Bampton MOR method on the free-free
beam (case 1) and rod (case 2) and compare its results (nat-
ural frequencies) with the results provided by the FEM and
analytic methods.

2) Creation of a cantilever beam (case 1) and rod (case 2) by
applying a fixed support on the left end of the beam and
compare the results of the different methods.

3) To apply a harmonic excitation (F, in case 1 and F,in

case 2) and observe the amplitudes of the vibration at the
end of the beam or rod (e.g. plotting the transfer function)

3. Application of the Craig-Bampton method

For the application of the Craig-Bampton method, the de-
grees-of-freedom of the beam’s FEM model have to be parti-
tioned into master (m) and slave (s) degrees-of-freedom. Hence
the partitioned equation-system of motion looks as follows:
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The reduced system matrices can be achieved by a trans-
formation using the Craig-Bampton transformation matrix, in-
troduced in Ref. [1].

I o 1 ! o
_|=mm =me ‘:} *’:m =mp i (2)
=c8 -
Lism CI;spJ L7255 ism isp

The left side column of the above matrix contains the static
modes, while the right side contains the fixed boundary normal
modes, where @ is the reduced modal matrix - containing p

modes - of the slave system. The modes of this modal matrix
are gained from the following eigenvalue problem:
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The natural frequencies and natural modes of the Craig-

Bampton model are gained from the following eigenvalue prob-

lem:
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where K and M are the reduced stiffness and mass matrices.
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In case 1, the master degrees-of-freedom are the vertical and
angular displacements of the node at the left end, the vertical
displacement of the node at l: location and the vertical dis-
placement of the node at the right end of the beam, as can be
seen in details in Ref. [3]. In case 2 the master degrees-of-
freedom are the axial displacements of the nodes at the left and
at the right end of the rod.
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4. Numerical results

The results of the first two tests i.e. the natural frequencies
of the free-free end and fixed-free end beam (case 1) and rod
(case 2) are summarized in Table 1. The investigations were
carried out on the analytic model, on different FEM and CB
models, the characteristics of which are also indicated in Table
1.

Table 1: Comparison of the natural frequencies

model name: A B C D E F G

type of the model analytic  FEM CB FEM CB CB CB
original FEM modell dimension - 22 22 12 22 42 22
physical+modal coordinates 2240 4+18 12+0 448 4+8 4+4

159.5 159.5 159.5 159.6 159.5 159.5  159.5
439.7 439.8 439.8 441.1 439.8 439.7 4417
861.9 862.7 862.7 870.2 862.8 862.1 8652
14248 1428.2 1428.2 1439.0 1429.2 1426.7 1451.7
21284  2139.2 2139.2 23680 21413 2131.8 2263.0
2972.7 3000.2 3000.2 3409.1 30184 3001.2 5729.1
3957.7 4016.5 4016.5 4862.7 4061.6 4026.7 -
50835 5187.7 5187.7 68759 5230.7 5147.6
6350.0 64446 64446 10376.2 6543.0 6549.5
10 7757.2 85584 8558.4 10902.3 18323.1 18290.6
type of the model analytic  FEM CB FEM CB CB CB
original FEM modell dimension - 20 20 10 20 40 20
physica+modal coordinates - 2040 2+18 10+0 2+8 2+8 2+4
251 251 251 251 251 251 251

CASE 1:
Free - Free Beam
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1
2 157.1 157.1 157.1 157.2 157.1 1571 157.1
3 439.8 439.9 439.9 441.4 440.0 439.9 4409
4 861.9 862.7 862.7 872.0 862.8 862.1  864.0
CASE 1: 5 14248 14284 14284 14473 1429.0 1426.0 1456.6
Fixed - Free Beam 6 21284 21399 21399 24044 21418 21312 2286.0
7 29727 30023 30023 35165 3019.9 2999.2 -
8 3957.7 40223 4022.3 5099.6 4065.9 4023.1
9 50835 5200.8 5200.8 72444 5239.2 51350
10 6350.0 6465.4 6465.4 10656.9 6566.9 6561.0 -
type of the model analytic  FEM CB FEM CB CB CB
original FEM modell dimension - 21 21 11 21 41 21

21+0 2+19 11+0 2+9 2+9 2+4

physical+modal coordinates -
2586.1 2588.8 2588.8 2596.7 2589.0 2587.2 2591.0

1
2 51722 51935 51935 5257.6 51949 5179.9 5236.0
3 77583 7830.3 7830.3 8047.6 78383 7788.3 79119
4 103444 105153 105153 11030.4 10528.2 10408.3 12278.3
CASE 2: 5 129305 132649 132649 14257.9 13313.2 13080.6 15493.9
Free - Free Rod 6 15516.6 160953 16095.3 17740.8 16154.4 15747.9 -
7 18102.7 19022.4 19022.4 21380.4 19238.4 18593.2
8 20688.8 22060.8 22060.8 24850.7 22297.5 21329.6
9 232749 25222.7 25222.7 27499.8 28795.6 28085.4
10 25861.0 28515.8 28515.8 28515.8 32220.5 31308.2 -
type of the model analytic  FEM CB FEM CB CB CB
original FEM modell dimension - 20 20 10 20 40 20

- 20+0 1+19 10+0 1+9 149 1+4
1293.0 12934 12934 12944 12934 12932 1293.6
3879.1 38881 38881 39151 38885 38820 3894.2
6465.2 65069 65069 6632.4 6508.7 6478.5 6540.3
9051.3 91657 9165.7 9511.2 9171.1 9088.3 9296.6
11637.4 11881.0 11881.0 126114 11894.0 11717.4 14042.7
142235 14669.0 14669.0 15969.9 14696.8 14373.6 -
16809.6 17545.8 175458 19554.4 17602.8 17067.7
19395.7 20526.8 20526.8 23169.7 20644.3 19819.4
21981.8 23625.7 23625.7 26330.1 23892.7 22681.0
10 24567.9 26852.6 26852.6 28254.5 30680.0 29802.7

physical+modal coordinates

CASE 2:
Fixed - Free Rod
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Observing the table, the following consequences can be drawn:

e Comparing B and D FEM models, one can observe, that us-
ing a finer mesh increases the accuracy of the calculated
natural frequencies.

e As it can be seen from the B FEM and C CB models, if the
dimension of the equation-system of motion is not de-
creased during the CB transformation, namely only the
physical coordinates are transformed into a set of physical
and modal coordinates, the FEM and CB models provide the
same results.

e The D FEM and E CB models have the same dimension,
thus, the numerical cost is the same. Regarding the accura-
cy, the results of the CB model are by far closer to the exact
analytical results, than the results provided by the E FEM

model. This tendency changes only at higher frequencies,
where the FEM model gives better results.

e The E and F CB models have the same dimension, but the F
model is derived from a finer FEM model. Comparing the
results with the analytic results, one can find out that using a
finer mesh for the CB model reduction increases the accura-
cy, but only with a minor extent.

e Comparing the G CB model with the D FEM model, one
can observe, that at lower frequencies, the CB model pro-
vides better accuracy at lower frequencies despite the small-
er dimension number.

For the third test - the excited analysis - the frequency re-
sponse functions (FRF) of the A, D and F models were com-
pared. According to Ref. [2], the FRF is described by the fol-
lowing formula
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Figure 2 illustrates the comparison of the A analytical, D
FEM, and F CB models, using ¢ =0.01 damping ratio. As it
can be observed from the figure, both in case of the beam and in
case of the rod, the FRF of the F model provides a quite good
agreement with the analytic solution, while the D model shifts
into higher frequencies. The F model gives worse results only at
high frequencies.
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Figure 2: Comparison of the frequency response functions in
case 1 (a) and case 2 (b)
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