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Abstract 
 

In the paper a kind of meshless discretization technique, called Kansa method, is investigated in the context of problems with 
multiple boundary conditions. This numerical method uses interpolant composed of radial basis functions as well as collocation 
technique to discretize differential equations. To overcome the problem that appears for equations with multiple boundary conditions, 
where more equations should be associated with a boundary node than degrees of freedom that exist at this node, an extension of the 
method is proposed. The key idea lies in the modification of the interpolant with the use of Hermite formulation. The details of the 
approach are shown in the paper. Moreover, the special attention is paid to estimate respective value of the shape parameter included 
in radial functions to ensure stability of the solution process and high accuracy. To illustrate usefulness, accuracy and convergence of 
the method, it is employed to solve a test problem of bending Kirchhoff plates. 
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1. Introduction 

In 1990 Kansa applied an interpolant composed of radial 
basis functions (RBF) in conjunction with collocation procedure 
to solve differential equations [1,2]. In this way, a nice meshless 
features of these functions, reported by Hardy [3] and Buhmann 
[4], were introduced into the area of differential equations. 
Since then, the method has attracted more and more 
researchers’ interest due to its simplicity, rapid convergence and 
high accuracy. There are many papers devoted to this method 
and its applications [5]. In most of them the method is used to 
solve lower order equations possessing one boundary condition 
associated with a boundary. A problem arises, when one applies 
the method to solve differential equation of higher order. To 
ensure this problem to be well-posed more than one boundary 
condition have to be introduced on each boundary. Collocation 
technique applied to such a problem associates these boundary 
conditions in a discrete form with a boundary node, where only 
one unknown function value is searched for. Therefore the 
direct use of the method leads to overdetermined set of 
algebraic equations, similarly as in RBF-based pseudospectral 
approach, described in [6]. The solution in least squares sense 
can be achieved in such a case. To preserve interpolation 
character of the method, in the present paper, the interpolant 
that approximates the sought function is modified according to 
Hermite idea. Additional terms associated with additional 
degrees of freedom at boundary nodes are introduced, similarly 
as in another RBF collocation approach [7]. It allows the 
method to be easily applied in problems with multiple boundary 
conditions and increase accuracy of the approach.           

2. Modified Kansa method 

Let us consider a boundary value problem with multiple 
boundary conditions written in a general form as 

inLu f     (1) 

1 1 2 2, onBu g B u g     (2) 

where L, B1, B2 are differential operators, u denotes the sought 
function and f, g1, g2 represent known functions. Without loss of 
generality it is assumed that two boundary conditions are 
needed to make Eq. (1) well-posed.  

The solution of the problem in the Kansa method is 
searched in the form of interpolation function composed of RBF 
[1,2]. In the present approach the interpolant is extended by 
adding some additional terms connected with boundary 
conditions. The modified interpolation function assumes the 
form 
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where    denotes RBF, nξ are some special points called 

centers, which coincide with nodes xi, i = 1,…,N. Among them 

one can distinguish interior nodes , 1,...,I I

i i Nx and nodes 

imposed on the boundary , 1,...,B B

i i Nx . In Eq.(3), 1Bξ and 2Bξ  

are differential operators from boundary conditions acting on 

the radial function treated as a function of  variable. 
Introducing Eq. (3) into Eqs (1)-(2) and by collocating it at 

each node, the system of equations for unknown interpolation 
coefficients αi, βi, γi is obtained. Its solution can be written as 
follows 
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where the entries of the block matrices included in coefficient 
matrix in Eq. (4) follow from the imposition of the appropriate 
differential operators on interpolant (3) and evaluation of the 
obtained expressions at respective nodes.  

Once the interpolation coefficients are obtained the solution 
can be described at any point by Eq. (3).  
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2.1. Remarks on the solvability and stability of the solution 
process 

The unique solution (Eq. (4)) exists if only the coefficient 
matrix is invertible. Some remarks on the invertibility of the 
matrix, in the case of the original Kansa method, can be found 
in various papers [8]. From this information one can conclude 
that although strictly positive definite RBF are used or 
interpolant (3) is augmented by polynomial terms, the Kansa 
matrix can be singular. But these cases are very rare and there 
are many examples of successful application of the method. 
Based on findings from [5], the same conclusion can be drawn 
for the modified Kansa method. To ensure the matrix to be 
invertible, Fasshauer [5] introduced the differential operator 
from the governing equation into the interpolant. It makes the 
Kansa matrix be symmetric one, and therefore invertible. This 
approach can be also incorporated into the modified approach 
presented in the present paper.  

Another issue connected with obtaining solution (4) is the 
stability of the solution process. To achieve high accuracy one 
should adjust the value of the shape parameter included in RBF. 
The values that theoretically lead to high accuracy make the 
matrix ill-conditioned and therefore the system difficult to 
solve. To obtain appropriate value of the parameter a heuristics 
that relates the accuracy and stability with a number of 
significant digits assumed for computation is used. The details 
are shown in [6].      

3. Test problem  

As a benchmark problem, the method has been applied to 
solve the static problem of thin, isotropic quadrilateral plates 
governed by the equation  
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where w denotes the transverse plate displacement, q is the 
applied lateral force per a unit of area and D is the flexural 
rigidity of the plate. 

In present paper, combination of simply-supported and 
clamped boundary conditions are considered. Noting them in 
terms of operators used in Eq. (3) one can put 

1 20, 0B w B w    (6) 

where B1=1 and 
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In above equations θ is the angle between the normal to the 
plate boundary and the x-axis.  

The problem has been solved by the method described in 
section 2 using multiquadric RBF and some results for the 
square plates are presented in Tab. 1. For comparison purposes, 
in the table the reference results obtained by Levy’s (single 
series) method and finite difference one are also included. Both 
uniform and irregular distributions of nodes have been tested. 

Table 1 shows good agreement of the results obtained by 
the modified Kansa method with the reference results.  

 
 
 

Table 1: Normalized maximum deflection of the square plate 

 SSSS CCCC SCSC 

uniform grid 

N=121    
NI = 81 

4.032e-3 1.262 e-3 1.907e-3 

N=225     
NI = 169  

4.051e-3 1.263 e-3 1.912e-3 

irregular grid 

N=121    
NI = 81 

4.060e-3 1.263 e-3 1.915e-3 

N=225    
NI = 169 

4.058e-3 1.262 e-3 1.914 e-3 

Reference 
results 

4.062e-3 1.265e-3 1.917 e-3 

4.  Conclusion 

In the paper the use of a kind of collocation method that 
takes advantage of RBF interpolation to solve differential 
equations of higher order is shown. Equations of this type 
possess multiple boundary conditions and the direct use of the 
collocation techniques is cumbersome. To enable the Kansa 
method to be applied to such problems the interpolation 
function has been extended according to Hermite interpolation 
idea. To this end differential operators from boundary 
conditions have been included in the interpolant. The method 
leads to a system of equations with non-symmetric coefficient 
matrix. By imposing the differential operator from governing 
equation on some terms of the interpolant this matrix can be 
assembled as a symmetric one. In the paper the method has 
been validated by the problem of bending of thin plates. By 
choosing appropriate value of the shape parameter in RBF the 
method is able to provide very accurate results.   
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