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Abstract

A stress based formulation of the finite element method has been applied to the axially symmetric equilibrium problem for an elastic
solid. The case of fully or nearly incompressible material has been taken into account. A rectangular element has been proposed to
approximate statically admissible stress fields. The obtained results have been compared with outcomes gained by the u–p (mixed)
method.
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1. Introduction

The isochoric deformation is not embedded in the approxi-
mation of the deformation field by means of linear or quadratic
interpolation function used commonly in the displacement-based
finite element method (FEM). As a result, in an analysis of an
isotropic material with Poisson’s ratio close to 0.5, a phenomenon
of volumetric locking is observed. There are some ways of alle-
viating the influence of locking like averaging (smoothing) the
volumetric strain or the pressure or the use of the mixed formula-
tion, u–p, formulation where, beside the displacement field, the
pressure field is a primary unknown, e.g. [1]. The stress based
formulation of the finite element method allows one to avoid the
difficulties related to locking phenomenon. This formulation is
based on the principle of complementary work. However, it is
rather rarely used in the research and engineering (except the case
of torsion problems). The main reason seems to be a harder way
of construction of statically admissible stress fields in compari-
son to the interpolation of kinematically admissible displacement
fields in the displacement-based FEM.

In the present paper, the stress fields in the axially symmet-
ric problem have been constructed by means of stress function
having two components F and M . The first component has been
interpolated by use of element with shape functions of C1 class
while the second one by means of shape functions of C1 class
with respect to the radial coordinate and C0 class with respect to
the vertical one.

2. Problem statement

A static, small deformation problem for an isotropic elastic
body is analysed. No restriction for the value of Poisson’s ratio
is assumed; it may be close to 0.5 or equal to this number. In the
considered axially symmetric case, the four non-zero components
of the stress field satisfy the following two equilibrium equations:

σrr,r + σrz,z + (σrr − σϕϕ)/r = 0
(1)

σrz,r + σzz,z + σrz/r = 0

where r, z and ϕ denote the cylindrical coordinates while the
comma indicates the partial derivative. Physical components of
the stress tensor have been used in Eq. (1), and σrϕ = σzϕ = 0.

Let us define the set of statically admissible fields of stresses:

Y = {τ ∈ [L2(Ω)]9 : τij = τji, τ satisfies Eq. (1) in Ω,
ταβ nβ = tα on Γσ} (2)

whereΩ denotes the section in rz plane of the region occupied by
the analysed body, nα the vector outwardly normal to the bound-
ary of Ω, Γσ the part of the section where the Cauchy stress vec-
tor, tα, is given, x1 = r, x2 = z, α = 1, 2, and L2 denotes the
space of square-integrable functions.

The static problem for the considered axisymmetric elastic
body can be stated as follows: Find the stress field σ ∈ Y such
that the variational equation holds∫
Ω

Cijkl σkl (τij − σij) dx =

∫
Γu

Ui (τij − σij)nj ds

∀τ ∈ Y (3)

where Cijkl denotes the tensor of elastic compliances and Γu the
part of the boundary of section Ω where displacements Ui are
given. Eq. (3) expresses the principle of complementary work.

3. Finite element solution

In order to satisfy the equilibrium equations (1) inside region
Ω, a stress function with two components F (known as Love’s
stress function) and M has been applied. The non-zero stress
components are expressed by means of the stress function as fol-
lows [3]:

σrr = F,zz +M, σzz = F,rr + F,r/r,
(4)

σϕϕ = (rM),r + F,zz, σrz = −F,rz.

To obtain convergence of the finite element solution, it is required
to use interpolation functions of class C1 for function F and of
class C0 for function M . This follows from the orders of deriva-
tives of F and M appearing in the equation of complementary
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work (3). Thus, a rectangular element with shape functions de-
fined as follows: F ∈ Q3(r)×Q3(z) and M ∈ Q1(r)×Q1(z)
can be used where Qn(x) denotes the space of polynomials of
nth degree with respect to variable x. This means that, at each
nodexi, four degrees of freedom are used for function F : F (xi),
∂F
∂r

(xi), ∂F∂z (xi) and ∂2F
∂r∂z

(xi), and one degree of freedom for
function M : M(xi). However, such a choice of shape functions
leads, to non-smooth distribution of stress component σϕϕ as the
degrees of polynomials in the case of this component generated
by the two stress function components are different. Therefore,
it has been proposed to apply stress function M as an element
of space Q3(r) × Q1(z) which means that two degrees of free-
dom are defined for M at each node: M(xi) and ∂M

∂r
(xi). The

proposed finite element has 24 degrees of freedom and satisfies
exactly equilibrium equations (1) at any point of region Ω. To
fulfill the equilibrium conditions on boundary Γσ , the Lagrange
multiplier method is employed [4].

4. Numerical example

A thick circular plate loaded uniformly on its top surface
and clamped on its cylindrical surface has been considered. The
thickness and radius of the plate has been assumed 1 m and 1.5 m,
respectively, while the load intensity 10 Pa. Calculations have
been made for the following material properties: Young’s modu-
lus E = 1GPa and Poisson’s ratio ν = 0.49999. The results of
the calculations based on the proposed stress-based formulation
have been compared to the outcomes of the mixed (u–p) finite
element approach. The value of Poisson’s ratio assumed in the
calculations is the largest acceptable value in the ANSYS finite
element software [2] which has been utilised to get the u–p so-
lution. The eight node rectangular element has been used in the
mixed approach with parabolic interpolation functions and the
linear polynomial to approximate the fields of the displacement
vector and the pressure in the area of the element, respectively.

The results of calculations are shown in figures 1–4 in the
form of colour maps for all four stress components: σrr , σϕϕ,
σzz and σrz . In the diagrams, the outcomes are illustrated for
cross-section ϕ = const, r ∈ [0, 1.5]m, z ∈ [0, 1]m. The
computational grids – displayed in the figures – with 2×4 el-
ements have been applied in both the approaches. As seen in
the plots, the stress field obtained by the use of the present equi-
librium approach is much smoother than that calculated by the
mixed method. In the case of the proposed approach, more sig-
nificant roughness of the stress field has been observed only for
the region located in the vicinity of the clamped boundary.

stress-based method mixed method

Figure 1: Radial normal stress component, σrr [Pa]
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Figure 2: Circumferential normal stress component, σϕϕ [Pa]
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Figure 3: Vertical normal stress component, σzz [Pa]

stress-based method mixed method

Figure 4: Tangential stress component, σrz [Pa]

The results related to a denser computational mesh with 4×8
elements are illustrated in Fig. 5 for the circumferential normal
stress component. Quite remarkable discontinuities have been
seen in the case of the mixed method while the stress-based
method has produced very smooth result even with the use of
the coarse mesh.

stress-based method mixed method

Figure 5: Circumferential normal stress component, σϕϕ [Pa],
denser mesh case

5. Concluding remarks

The stress-based model of the finite element method has been
applied to the axially symmetric equilibrium problem for the lin-
early elastic material. The proposed rectangular element with 24
degrees of freedom has shown convergence of the approximate
solution. The proposed approach allows to find smoother and
more accurate stress field than the mixed displacement–pressure
formulation of FEM utilised commonly in computational me-
chanics.
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