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Abstract

The paper deals with the so-called local discontinuous Galerkin (LDG) method. The LDG method was developed almost twenty
years ago and is now well established in numerical analysis of engineering problems. The crucial point of the method is related to
the so-called numerical fluxes that have to be evaluated on the mesh skeleton. In this paper, an alternative approach for the numerical
fluxes is proposed, based on finite difference relations. Thus, in this paper the method is called LDG with finite difference (LDGFD).
The LDGFD method is presented for two-dimensional non-stationary heat transport. It has been demonstrated that the LDGFD method
is correct and stable, and it may be successfully applied to meshes with arbitrary polygonal finite elements. Where finite elements are
rectangular, very high order approximations may be achieved with Chebyshev polynomials used as the basis functions. The work is
illustrated with various examples presenting the advantages of LDGFD method.
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1. Introduction

Discontinuous Galerkin (DG) methods have become popular
mainly due to their computational flexibility and efficiency. Nev-
ertheless, only one DG method 4AS of the many existing ones
aAS falls within the scope of interest of this work 4AS the so-
called local DG (LDG) method [[1}[2]. The main idea of the LDG
method is to write the original problem into a system of first order
equations. The weak form system of equations is subsequently
constructed taking into account discontinuous approximations.
The key components of the method are the mesh skeleton nu-
merical fluxes that have to be set. Well designed numerical fluxes
guarantee stability of the method. There is no one formula for
numerical fluxes in the LGD method, and they have the form of
empirical relations in which some parameters have to be set by
the user.

In this paper, an alternative approach to numerical fluxes is
proposed. In this approach, one dimensional finite difference
(FD) relations are used for evaluations of required fluxes on the
mesh skeleton. A similar approach has been applied to enforce
boundary conditions of both Dirichlet and Neumann types. An
analogous method, also using FD relations, was successfully ap-
plied and presented in AuthordAZs previous papers, e.g. [3, 4],
which were discussing the standard DG method. However, the
LDG method requires the use of more sophisticated finite differ-
ence relations. For the sake of clarity, the version of the LDG
method presented in this work is called LDG with finite differ-
ence rules (LDGFD) to distinguish it from the standard LDG
method.

The LDGFD method is applied here to a two-dimensional
(2D) scalar parabolic problem which has the physical interpreta-
tion of non-stationary heat flow. In this problem, the main field
is temperature and the heat flux vector refers to the temperature
gradient. In the LDGFD method, both fields are approximated.
In this work, the LDGFD method is applied to polygonal meshes
that refer to the cases in which the finite element cells have arbi-
trary shapes and may be convex or non-convex. Here, the cells
may be non-simply-connected (NSC) (i.e. they may have holes
inside) or even non-connected (NC) (i.e. consisting of two or
more parts which are completely separated from each other). The
approximation in the finite element cells is based on a set of ba-
sis functions which may consist of quite arbitrary functions. It
means that there are no special requirements for those functions
on edges or vertices of the cell. For example, the basis functions
may be just monomials or other polynomials, such as Chebyshev

and Legendre. When the polygonal cells are rectangular, it is
possible to get very high-ordered approximation with p > 10, or
even p = 50.

A series of examples have been presented in this work to il-
lustrate the LDGFD method, including, in some of them, a com-
parison with the standard LDG method. In a benchmark exam-
ple, a convergence analysis is presented for both the LDGFD and
LDG methods. In the other example, the problem with heat flux
concentration is considered, and the results are compared with
those obtained by the standard DG method.

The work deals with discontinuous approximations, thus the
following operators need to be defined

[f] = lim [fle,  (f) = lim {f) M)

e—0

where the jump and mean values at distance e are as follows:
[fle = f(x+€en) — f(x —€n) )
(). =05 (f(x+en) + f(x—em)) )

2. Mathematical model

In this work, a non-stationary heat flow in a 2D domain is go-
ing to be analysed. However, for the sake of simplicity, a problem
related to a stationary case has been selected here to present the
proposed approach, which reads as:

divq—r =0,
t=% onS,

q=-\Vt iV

N (C))
qgn=¢ onsS,
where q is the heat flux vector, 7 the heat source density, A is the
heat conductivity parameter for a thermally isotropic material, £
and ¢ are prescribed values of temperature and heat flux, respec-
tively, S; is the part of S where the temperature  is prescribed,
Sy is the part of .S where the heat flux ¢ is prescribed, n is the
unit vector normal to the outer boundary.
It may be seen that the first two relations in eq. (4)) can be ex-
pressed by two combined equations in the following weak forms
with test functions v and 7 that take into account both kinds of
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boundary conditions:
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where n” is the unit vector normal to the mesh skeleton.

In eqs. (3) and (B) the ¢ and g have to be additionally eval-
uated on S, and on S; and Sy, respectively. In the standard
LDG, they are substituted by the so-called numerical fluxes, but
LDGFD stipulates that special one-dimensional finite difference
rules are to be prepared for such values.

3. Approximations

In the LDGFD method, both the temperature and heat flux
vectors are approximated, and so are the test functions v and 7.
The approximations of ¢ and q on the whole mesh may be written
in the following form:
t=®t, q=®,9 nV (7)
where ®; and @ are the appropriate approximation matrices and
t, g are vectors of degrees of freedom for temperature and heat
flux, respectively. And thus, the jumps and mean values may be
obtained using the same approximation matrices and vectors of
degrees of freedom:

[t] = [®.0¢, () = (®:)E
[a] = [®J]a, (a)=(®4)a

Matrix ®; consists of a set of basis functions defined locally
for each finite element cell. The basis functions are not contin-
uous when coming from one element to another. The order of
basis functions may vary in neighbouring elements. The same
refers to ®,; however, if the order of an element is p to approx-
imate temperature, the approximation order for the heat flux is
p + 1 in this element. In the finite elements method, the approx-
imation functions (Lagrange polynomials) for a single cell are
strictly connected with the shape of the cell. In LDGFD there is
no such connection, so the shape of the cells may be quite arbi-
trary.

Taking into account the approximations in eq. (7) and (), a
system of equations is obtained in eqs. (3) and (6), which has the
following form:

Ktt Ktq E _ Ft
o wl i) [F

Kgt
4. Examples

on Ss 8)

Several examples have been included in this work. One of
them presents an analysis of a domain with a square hole inside,
Fig.[Ta] The problem has been solved by the LDGFD method on
various meshes, including the polygonal mesh shown in Flng_El

The results of calculations are presented in the form of maps of
temperature and heat flux components in Fig.[2} In this example,
the fluxes concentrations on the hole vertices are observed and
they tend to infinity. In the maps, the values of the heat fluxes are
limited to 100.
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Figure 1: Domain with a hole and a polygonal mesh.
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Figure 2: Maps of temperature and heat flux components.

5. Conclusions

This work presents the LDGFD method. As the method is
alternative to the standard LDG method, the paper also includes
a comparison of the two methods. It has been shown that the
LDGFD method is correct and stable. The LDGFD method can
be applied in meshes with arbitrary polygonal finite elements.
The stability of the method is particularly striking when used for
high-ordered approximations, where LDG fails to converge. The
hp mesh refinement in the LDGFD method is very easy. The
mesh may be nonconforming and high order elements may be set
side by side with low order elements.
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