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Abstract 

 

The paper introduces the impact of the self-stress level on the behaviour of the tensegrity truss structures. Displacements for real civil 

engineering tensegrity structures are analysed. The analysis is performed by the second and third order theory. Mathematica software 

and Sofistik programme is applied to the analysis.  

Keywords: truss, tensegrity, self-stress, control, non-linear theory 

 

1. Introduction 

Tensegrities are lightweight structures whose integrity is 

based on a balance between tension and compression. The con-

cept of such structures concerns on specific trusses which con-

sist of compression and tension components which stabilize 

each other despite the fact that there are mechanisms. Tensegri-

ty as a structural system offers many advantages over conven-

tional structural systems. Their main benefit is that under the 

right actuation they can maintain their stiffness during deploy-

ment without requiring external members [5].  

The tensegrity concept has found applications in civil 

engineering. The first civil structure inspired to the tensegrity 

principle is the cable dome proposed by Geiger and first 

employed for the roofs of the Olympic Gymnastics Hall and the 

Fencing Hall in Seoul. An important example of tensegrity 

being employed in roof structures is the stadia at La Plata. The 

largest existing cable dome is the Georgia Dome designed for 

the Atlanta Olympics in 1996 [3]. Moreover double-layer 

tensegrity grids and foldable tensegrity systems has been in the 

development. The design of double grid systems has resulted in 

an interest in the application of tensegrity to bridge 

construction. A recent achievement in this regard is the Kurilpa 

Bridge in Brisbane, Australia. It is the world’s largest 

“tensegrity-like” bridge, which was opened on the 4th of 

October 2009 [6]. The idea of tensegrity is also applied to build 

towers. The highest tensegrity tower (Warnow Tower) was built 

at the 2003 for the opening of the International Garden 

Exhibition in Rostock, Germany. The tower was designed by 

Mike Schlaich [1,4] and it is an example of “pure tensegrity” 

structure. The structure consists of six Simplex trusses of 8.3 m 

height, each made of three steel strings in compression (Ø=273 

mm, t=12 to 40 mm) which are stabilized by three diagonal 

cables (Ø=50 and 75 mm) and three horizontal cables (Ø=30 

and 50 mm). Warnow Tower, measuring 49.2 meters tall and, 

with the addition of a 12.5 meter "needle", totaling 62.3 meters 

in height. 

The stiffness of tensegrities comes from topology, 

configuration, pre-stress and initial axial element stiffness. An 

important benefit of tensegrity structures is possibility to control 

a stiffness due to existing infinitesimal mechanisms. 

The stiffness can be increased by self-stress forces added in 

truss members and also by applied external forces.  

The objective of the present paper is t[ analyse a possibility 

to control properties of real tensegrity structures e.g. the 

stiffness by self-stress state. 

2. Mathematical model of tensegrity structures 

Identification infinitesimal mechanisms and a self-stresses 

in structures is possible by using the second order theory: 

  PqKK  I

NLL ,  (1) 

where q is displacement vector, P is load vector, 
L

K is linear 

stiffness matrix and 
I

NL
K  is pre-stress stiffness matrix called the 

geometric stiffness matrix. To calculate the pre-stress stiffness 

matrix a self-stress, based upon a singular value decomposition 

of the linear stiffness matrix 
L

K  [2], is defined.  

The second order theory (1) do not include the influence of 

external loads on the stiffness of the structure. These loads 

cause displacements following the infinitesimal mechanism and 

lead to more compression of the structure by introducing 

additional tensile and pressure forces in elements. In order to 

take account the effect of additional compression geometrically 

nonlinear model (the third order theory) should be used: 

  PqKKK  II

NL

I

NLL  (2) 

where 
II

NL
K  is the initial strain matrix. 

The equation (2) is non-linear and an incremental resolution 

method (for example the Newton–Raphson method) is required 

in association with an iterative process. 

3. Examples 

The impact of the level of self-stress on displacements for 

Warnow Tower (Fig. 1) is studied in this paper. Concentrated 

load forces Pi=-1 kN are considered and displacements loaded 

nodes in the direction of the external forces are determined. 

Values of the self-stress are limited by load capacity of struts. 

Analysis of three models is presented in the paper. The first 
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model consists of one Simplex truss, second – two Simplex 

trusses and third – six Simplex trusses. The last example as well 

as more real civil engineering structures will be presented on 

conference. In the first case calculations are made in Mathemat-

ica environment. In the second case calculations are made using 

commercial program Sofistik that served to accomplish the fully 

geometrical non-linear analysis. 

 

b) 

 

a) 

 
Figure 1: Scheme of models: a) first model, b) second model 

The following mechanical and geometric properties are cho-

sen for the analysis: 
 steal S460N, Young’s modulus E = 210GPa, 

 diagonal cables: Ø 75 mm, I=1.553∙10-6 m4, A=4.418 10-3 m2, 

L=6 m, load capacity NRd = 3735 kN, self-stress 0.338499∙S, 

 horizontal cables: Ø 50 mm, I= 3.068∙10-7 m4, A=1.963 10-3 

m2, L=10.66 m, load capacity NRd = 1209 kN, self-stress: 

0.138078∙S, 

 struts: Ø 273 mm with thickness 40 mm, I=2.046∙10-4 m4, 

A=2.928∙10-2 m2, L=10.66 m, load capacity Nb,R,d = -3735 kN, 

self-stress -0.424964∙S. 

For the first model (Fig. 1a) dependence of factor of self-

stress S on displacement q12 is presented in Fig. 2. For the 

second model (Fig. 1b) two independent factors of self-stress 

are considered: S1 – on the lower level of the structure and S2 – 

on the higher level. The influence of both self-stresses on the 

q21 displacement are presented in Fig. 3 with the use of second 

and third order theory. 

 

 

Figure 2: Values of displacement q12 for the first model 

(external load: P12=-1 kN) 

4. Conclusions 

The analysis of real civil engineering tensegrity structures 

shows the possibility to control displacements by adjusting 

prestressing forces. For multi-module structures the control is 

multi-parameter by analysing separate self-stresses. Nodal 

displacements decrease significantly with increase of internal 

forces of self-stress as well as of the influence of geometrical  

nonlinearity is clearly seen. 

a) 

 

b) 

 

Figure 3: Displacement q21: a) 2nd order, b) 3rd order theory 
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