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Abstract 
 

In the paper a description of heat transfer in a one-dimensional two-layered metal film is considered. The fuzzy coupled lattice 
Boltzmann equations for electrons and phonons supplemented by appropriate boundary and initial conditions are applied to analyze 
the thermal process in a thin metal film. The model with fuzzy values of relaxation times and boundary-initial conditions for gold and 
titanium is proposed.  A problem considered is solved by the fuzzy lattice Boltzmann method usingα -cuts and the rules of directed 
interval arithmetic. The application of α -cuts allows one to avoid complicated arithmetical operations in the fuzzy numbers set. In 
the final part of the paper an example for a numerical solution is presented. 
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1. Introduction 

In metals the heat transport is mainly realized by two kinds of 
heat carriers: electrons and quanta of lattice vibrations called 
phonons. Electrons and phonons as heat carriers always ”move” 
from the part with the higher temperature to the part with the 
lower temperature and during  this move they carry energy. This 
kind of phenomena can be described by the Boltzmann transport 
equation (BTE) which is difficult to solve. For this reason, the 
lattice Boltzmann method (LBM) is applied to find a solution of 
a discretized set of the Boltzmann transport equations. In the 
paper the coupled lattice Boltzmann equations for electrons and 
phonons have been assumed. The coupled model contains two 
energy equations determining the heat exchange in the electron 
gas and the metal lattice [1, 5, 6]. Such an approach in which 
the physical parameters appearing in the mathematical model 
are treated as constant values is widely used. In this paper,  
fuzzy values of relaxation times and boundary-initial conditions 
for successive sub-domains are taken into account. The 
relaxation time is estimated experimentally and its actual value 
is still a subject of discussion [7]. In the paper the heat transport 
proceeding in a two-layered thin film is considered [9]. To solve 
the problem formulated the fuzzy lattice Boltzmann method 
using α-cuts and the rules of directed interval arithmetic is 
applied [3, 4]. In the final part of the paper the examples of 
numerical computations are shown. 

2. The fuzzy Boltzmann transport equation 

The unsteady fuzzy BTEs transformed into equivalent fuzzy 
energy density equations  for the 1D coupled model with two 
kinds of carriers (e-electrons and ph-phonons) can be written as 
follows [2] 
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where s = 1, 2 corresponds to the successive layers of the thin 
film (gold, titanium), se% is the fuzzy energy density, 0se%  is the 

equilibrium fuzzy energy density, sv  is the frequency-dependent 

propagation speed, r sτ%  is the fuzzy relaxation time, t denotes the 

time and sQ%  is the fuzzy internal energy source related to an 

unit of volume for electrons and phonons respectively. 
The electron and phonon energy densities at their equivalent 

nonequilibrium temperatures are given by the formulas 
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where D sΘ is the Debye temperature of the solid, bk  is the 

Boltzmann constant, Fsε is the Fermi energy, ,e s ph sT T% % are the 

fuzzy lattice temperatures for electrons and phonons 
respectively, while e sn is the electron density and ph sη  is the 

phonon density.  
The fuzzy electron and phonon energy sources are calculated 
using the following expressions [2] 
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 ( )ph s s e s ph sQ G T T= −% % %  (6) 

where sQ′ is the power density deposited by the external source 

function and sG  is the electron-phonon coupling factor which 

characterizes the energy exchange between electrons and 
phonons. The equations (1) and (2) should be supplemented by 
the initial condition and fuzzy boundary conditions. 
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3. Fuzzy lattice Boltzmann equation 

The fuzzy lattice Boltzmann method (LBM) is a numerical 
technique for the simulation of heat transfer.  

In the problem analyzed a set of eight fuzzy differential 
equations is obtained [8] 
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where 1f ft t t+∆ = − is the time step needed for electron/ phonon 

to travel from one lattice site to the neighboring lattice site. 
The total fuzzy energy density for electrons and phonons is 
defined as the sum of discrete fuzzy energy densities in all the 
lattice directions and takes the form  
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where d = 1, 2 corresponds to the positive and negative              
x direction [2]. 
The equilibrium fuzzy electron energy density and phonon 
energy density is the same in all lattice directions and can be 
calculated using the following formula [8] 
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After subsequent computations the fuzzy lattice temperatures 
for electrons and phonons are determined using the formulas  
(3) and (4). 

4. Results of computations 

As a numerical example the heat transport in a gold-titanium 
film of the thickness L=200 nm has been analyzed. The 
following input data have been introduced for the film 

respectively: 2
1 0W/m ,bq = %%  ( )2 285,300,315 K,bT =%  

0 300K,sT =  2010sQ′ = W/m3, 20nm,sx∆ =  0.01 ps,t∆ =  

fuzzy relaxation times for phonons and electrons 
( 0.05 , , + 0.05 ),ph s ph s ph s ph s ph s ph sτ = τ − τ τ τ τ% ( 0.05 ,e s e s e sτ = τ − τ%

, + 0.05 )e s e s e sτ τ τ  and other material properties that are defined 

in Table 1.  

Table1: Material properties 

 ph sτ  e sτ  DΘ  
en ( )2810×  Fε ( )1910−×  

Au 0.8 0.04 170 5.9 8.86 
Ti 0.5 0.01 420 13.80 15.61 

Figure 1 illustrates the fuzzy electrons temperature 

distribution in the domain considered for the chosen times.  
The generalization of LBM allows one to find the numerical 

solution in the fuzzy form and such an information may be 
important especially for the parameters which are estimated 
experimentally, for example the relaxation time.  

The problem analyzed can be extended to multi-layered thin 
films. 
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Figure 1: The fuzzy electrons temperature distribution 
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