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Abstract

In the paper a description of heat transfer in a-dimensional two-layered metal film is consider&tde fuzzy coupled lattice
Boltzmann equations for electrons and phonons soppited by appropriate boundary and initial cond&iare applied to analyze
the thermal process in a thin metal film. The mosi¢h fuzzy values of relaxation times and bounédaitial conditions for gold and
titanium is proposed. A problem considered is edlisy the fuzzy lattice Boltzmann method usinguts and the rules of directed
interval arithmeticThe application ofa -cuts allows one to avoid complicated arithmetimaérations in the fuzzy numbers set. In
the final part of the paper an example for a nuca¢solution is presented.
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1. Introduction

In metals the heat transport is mainly realizedway kinds of
heat carriers: electrons and quanta of latticeatitms called
phonons. Electrons and phonons as heat carriees/alimove”
from the part with the higher temperature to thet path the
lower temperature and during this move they cangrgy. This
kind of phenomena can be described by the Boltznvamsport
equation (BTE) which is difficult to solve. For thisason, the
lattice Boltzmann method (LBM) is applied to findagion of
a discretized set of the Boltzmann transport eqostiin the

equilibrium fuzzy energy density, is the frequency-dependent
propagation speed;, , is the fuzzy relaxation time¢,denotes the

time and (':)S is the fuzzy internal energy source related to an

unit of volume for electrons and phonons respelgtive
The electron and phonon energy densities at tigeivalent

paper the coupled lattice Boltzmann equations fectedbns and
phonons have been assumed. The coupled model neted
energy equations determining the heat exchangeeirelectron
gas and the metal lattice [1, 5, 6]. Such an ampraa which
the physical parameters appearing in the matheahatiodel
are treated as constant values is widely usedhik gaper,
fuzzy values of relaxation times and boundary-ahitionditions
for successive sub-domains are taken into accolihe
relaxation time is estimated experimentally ancaitiual value
is still a subject of discussion [7]. In the pafiez heat transport
proceeding in a two-layered thin film is considef@ld To solve
the problem formulated the fuzzy lattice Boltzmanetimod

using o-cuts and the rules of directed interval arithmeésic

applied [3, 4]. In the final part of the paper teeamples of
numerical computations are shown.

2. Thefuzzy Boltzmann transport equation

The unsteady fuzzy BTESs transformed into equivaierty
energy density equations for the 1D coupled medti two
kinds of carrierse€-electrons anghh-phonons) can be written as
follows [2]
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where ©,.is the Debye temperature of the solik, is the

Boltzmann constantg. is the Fermi energy;T

Tess Tyne are the
fuzzy lattice temperatures for electrons and phenon

respectively, whilenis the electron density and . is the

phonon density.
The fuzzy electron and phonon energy sources doelated

using the following expressions][z
Qes = Q,s _Gs (-I:es _-I:phs)
Qphs = Gs(-l:es _-l:phs)

phs
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where Q. is the power density deposited by the externalc®ur

function and G, is the electron-phonon coupling factor which

characterizes the energy exchange between -electamas
phonons. The equations (1) and (2) should be soEpled by
the initial condition and fuzzy boundary conditions
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3. Fuzzy lattice Boltzmann equation distribution in the domain considered for the chosmes.
The generalization of LBM allows one to find thenmarical

The fuzzy lattice Boltzmann method (LBM) is a numakic solution in the fuzzy form and such an informatioray be

technique for the simulation of heat transfer. important especially for the parameters which aséneted
) o experimentally, for example the relaxation time.
In the problem analyzed a set of eight fuzzy défeial The problem analyzed can be extended to multi-&xyénin
equations is obtained [8] films.
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where At =t "' -t " is the time step needed for electron/ phonon 0.3p8
to travel from one lattice site to the neighbofiatjce site. 450
The total fuzzy energy density for electrons andnans is
defined as the sum of discrete fuzzy energy dessiti all the
lattice directions and takes the form 250
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