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Abstract 

 

This paper is devoted to numerical testing of influence of elastic supports on forced harmonic vibrations of von Kármán 

geometrically non-linear plates, made of the Zener viscoelastic material. The dynamic problem is formulated in the frequency 

domain, using a consistent harmonic form of the solution for plate displacements and the time-averaged principle of virtual work. 

The amplitude equation is derived from the harmonic balance method. Then, the plate is discretized with 8-noded rectangular plate 

finite elements with selective-reduced integration. Numerical examples of one- and two-span plates with elastic supports are solved 

to find response curves with the use of a path-following method. Some types of unusual dynamic behaviour are found, which occur 

due to the combination of geometric non-linearity, the adopted model of viscoelasticity and the presence of elastic supports. 
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1. Introduction 

Reduction of excessive and undesired vibrations of 

structures or their elements is an important issue in modern 

technology. Some of methods used to achieve this goal involve 

special materials exhibiting damping properties, which can be 

represented by different viscoelastic models.  

In the analyses Kelvin-Voigt approximation is used usually, 

e.g. [1]. The Golla-Hughes-McTavish material was adopted in 

[2]. The Zener material model was used by the authors in [3]. 

Here that model and the method of solution of geometrically 

non-linear harmonically forced vibrations of plates was used to 

analyze the influence of elastic supports. Plates with physically 

linear and non-linear Winkler-type supports were considered. 

Cases of unusual dynamic behaviour resulting from a complex 

interplay of geometric non-linearity, character of the Zener 

material and the presence of elastic supports were found and 

discussed. 

The paper sketches the way of derivation of the amplitude 

equation in Section 2. Section 3 gives some information on the 

finite element discretisation used, while Section 4 presents 

results of numerical analysis and a discussion. 

2. Derivation of amplitude equation 

The functions of displacements of the mid-plane of a plate 

present in the model are: in-plane translations u0, v0; deflection 

w0 and angles of rotation ϕx and ϕy. The vectors of von Kármán 

strains, rotational, shear and in-plane, respectively, are  
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The internal forces: bending and torsional moments; two 

shear forces and in-plane forces, respectively, are assembled as 
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The physical relations for the Zener viscoelasticity have the 

form 

rr εDεDMM &&
∞+=+ ττ 0  
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where the classical stiffness matrices D0 and D∞ for bending, A0 

and A∞ for extension and Aq0 and Aq∞ for shear at initial and 

infinite time state are present. 

Harmonic vibrations excited by a transverse loading 
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with the frequency λ are analysed. The plate response 

compatible with the geometric non-linearity is assumed as 
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The time-averaged expression of the virtual work with the 

harmonic balance method, applied to solve the physical 

relations in Eq (3), yields the non-linear amplitude equation. For 

the details of this derivation, see [3]. 

3. Finite element discretization 

The amplitude equation is discretized using the finite 

element methodology. Here the 8-noded rectangular elements 

with selective reduced integration for the shear terms and bi-

quadratic shape functions are applied. The discretized amplitude 

equation with the unknown nodal amplitudes qe can be given as 
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with the vector of nodal load amplitudes Pe, the mass matrix Me 

as well as the linear and non-linear stiffness matrices Kel, Ken. 

for the plate. The latter ones include terms due to elastic 

supports. In order to solve this equation and find the response 

curves the arc-lenght method is applied. It also involves a 

computaton of the consistent linearization of the non-linear 

stiffness matrix Ken. The deatils are given in [3]. 

4. Numerical analyses and discussion 

In this section two numerical examples of plates with 

various support conditions are solved. The point load in the 

form of pwc amplitude, see Eq (4), is applied at the point A and 

the response in the form of the total deflection amplitude 

22
wswcw qqq +=  (7) 

computed from sine and cosine amplitudes measured at the 

same point A is considered. 

The elastic supports in the model are of Winkler non-linear 

type with the reaction-deflection (Rw–qw) relation given by 

3
31 www qkqkR +=  (8) 

The plates have the thickness h = 0.1 m and are made from 

the viscoelastic material with E0 = 7·106 N/m2, E∞ = 107 N/m2, 

τ = 0.0175 s, ν = 0.3 and ρ = 1250 kg/m3. In all the cases there 

are 6×6 finite elements per one plate span.  

First, let us consider a single-span square plate shown in 

Fig. 1, simply supported at one pair of opposite edges and 

elastically supported at the other edges. The excitation 

amplitude is pwc = 1500 N. The response curves for varying 

value of the linear support stiffness k1 (with k3 = 0) are shown in 

Fig. 2. It is interesting to observe, that the peak amplitude 

values in these curves related to the first resonance frequency 

are not a monotonic function of support stiffness. Such a 

behaviour was observed in [3] for the relation of the peak value 

and the relaxation time τ. This property is attributed to the 

nature of Zener model of viscoelasticity. There exists a critical 

combination of model parameters which yields the extreme 

peak value. Here the critical support stiffness corresponding to 

the material data given above is about k1 = 6·103 N/m. 

For this value the influence of non-linear component in 

Eq (8) is further investigated and the response curves are shown 

in Fig. 3. One can notice, that the increase of the positive 

coefficient k3 leads to overstiffening of the system, manifested 

in a more inclined response curve at the resonance peak, while 

the negative k3 has an opposite effect. 

Then a two-span plate with the elastic intermediate support, 

see Fig. 1,  with the excitation amplitude pwc = 2500 N is 

considered.  The  influence  of the linear stiffness coefficient  k1  

 
 

 

 

 

 

 

 

 

Figure 1: Analyzed plates 

on response curves is presented in Fig. 4. Here an interesting 

behaviour is visible, too. Changes in sequence of vibration 

modes for varying k1 lead to unusual results, especially the 

looped curve for k1 = 102 N/m is worthy mentioning. Appa-

rently, it corresponds to the situation when two first modes of 

vibration have similar resonance frequencies and do interact. 
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Figure 2: Response curves for the single-span plate with k3 = 0 
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Figure 3: Response curves for the single-span plate with 

k1 = 3·104 N/m 
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Figure 4: Response curves for the two-span plate with k3 = 0 
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