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Abstract

Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a
continuous manifold. Continuum mechanics models begin by introducing of three-dimensional (or less dimensional) Euclidean space.
The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position
vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-
preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature.
For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations
describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive equations and the
boundary and/or initial conditions has to defined.

Within the presentation some examples of solid deformable continua will be discussed regarding the basics and the numerical
treatment which is in general non-continuous. Finally, advanced models of continuum mechanics will be introduced and the challenges
for the numerical mechanics will be formulated.
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1. Continuum Mechanics

Modeling a solid or fluid as a continuum assumes that the
substance of the object completely and continuously fills the vol-
ume it occupies. Modeling objects as continua ignores that matter
is made of atoms, and so is not continuous. Fundamental physi-
cal laws such as the balance of mass, the balance of momentum,
the balance of moment of momentum, the balance of energy and
the balance of entropy may be applied to this model to derive
integral or differential equations describing their behavior. Fi-
nally, some information about the particular material behaviour
is added through constitutive and evolution equations.

Continuum mechanics deals with physical properties which
are independent of any particular coordinate system in which they
are observed. These physical properties are then represented by
tensors. They are mathematical objects which can be presented
as invariant quantities using the direct tensor calculus, see e.g.
[1]. These tensors can be expressed in coordinate systems for
computational convenience.

2. Basic Equations

The basic equations of continuum mechanics are partly inde-
pendent from the material behaviour and can be formulated in a
more or less general manner. The materials behavior is the in-
dividual response with respect to the loading. Below the basic
statement are given similar to [2, 3]

2.1. Material-Independent Statements - Classical Continuum
Mechanics

The starting point of continuum mechanics is the kinematics.
Within the kinematics there are two elements: deformation and
motion. Both can be presented mathematically by some geomet-
rical considerations. The kinematics can be introduced without
statements concerning the reasons of deformation and motion,
but also assumptions about the material behavior.

In the simplest case two configurations are given: the refer-
ence configuration for initial time and the current configuration.
Any change in the configuration of the continuum results in a
displacement having two parts: a rigid-body motion and a defor-
mation. A rigid-body motion (translation and rotation) is given
when the body does not change its shape or size. The motion and
the deformation of a continuum is a continuous time sequence.
Thus, the material body will occupy different configurations at
different times.

Any equation or property can be presented by Langrangian
or Eulerian descriptions. In the Lagrangian description domi-
nantly in solid mechanics the position and physical properties of
the particles are described in terms of the material or reference
configuration and time. As usual, the reference configuration is
the configuration at t = 0. An observer standing in the referential
frame observes the changes in the position and physical proper-
ties as the material body moves in space as time progresses. The
Eulerian description focuses on the current configuration, giving
attention to what is occurring at a fixed point in space as time pro-
gresses, instead of giving attention to individual particles as they
move through space and time. This approach is conveniently ap-
plied in fluid mechanics where the kinematic property of greatest
interest is the rate at which change is taking place.

Continuum mechanics deals with deformable bodies. Fol-
lowing the classical dynamics, the motion of a material body is
produced by the action of externally applied forces and moments.
One should distinguish surface and body actions. They result in
stresses within the body, but in the classical continuum mechanics
the couple stresses are ignored. In addition, the behavior of the
continuum can be influenced by non-mechanical actions (ther-
mal, electric, magnetic, etc.).

The last step in formulation the material-independent equa-
tions is the presentation of the balances. Let us introduce an ad-
ditive quantity

Y (t) =

∫

V

Ψ(xxx, t)dV (1)
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V is the volume in the actual configuration, xxx is the position vec-
tor and t denotes the time. The changes of the Y (t) are induced
by volume and surface effects

D

Dt
Y (t) =

D

Dt

∫

V

Ψ(xxx, t)dV =

∫

A

Φ(xxx, t)dA+

∫

V

Ξ(xxx, t)dV

(2)

Equations (1) and (2) are valid for tensors Ψ of arbitrary rank.
Ψ is a scalar quantity in the case of mass, energy and entropy
balance and a vector quantity in the case of the balance of mo-
mentum and moment of momentum. Φ is the flux through the
surface A in the direction of the normalnnn. Ξ denotes the increase
in the volume V . It is obvious that Φ is a tensor one rank higher
in comparison with Ψ and Ξ. Finally, following the standard pro-
cedures have to be performed to establish the local form of the
balances [2]

• applying the Reynolds theorem the balance equation in the
reference configuration,

• the transform of the surface integral into a volume integral
applying the Gauß-Ostrogradski theorem and

• assuming the smoothness of all fields.

2.2. Material-Dependent Statements

There are two types of statement: the constitutive equations
and may be some evolution equations. The first one is a re-
lation between two or more physical quantities. Examples are
stresses, strains, strain rates, heat flux, etc. These equations are
specific to a material or substance, and approximates the response
of that material to external mechanical or non-mechanical stim-
uli. They can be formulated top-down (from the general model
to more simpler models), bottom-up (starting from the simplest
one and performing step-wise extensions) and using rheological
models. If there is an additional evolution process (for exam-
ple damage) evolution equations can be introduced. Constitutive
equations can be of the algebraic, differential, integral and other
type. Evolution equations are ordinary differential equations of
first order with respect to time.

There are a lot of suggestions for material behavior models.
The most popular are the elastic, the visco-elastic, the plastic and
visco-plastic constitutive equations, see [3] among others.

2.3. Extensions of the Classical Continuum Mechanics

There are several extensions suggested since the end of the
nineteenth century. The first one was the model of the Cosserat
brothers [4]. This extension is related to the introduction ones not
only translational degrees of freedom, but also rotational ones.
Later by Eringen and others different variants of the Cosserat ap-
proach were introduced, see for example [5].

Another possibility is given by using higher order gradients
[6]. In the classical continuum mechanics we have only the first
gradient of the displacements (∇∇∇uuu). Introducing ∇∇∇∇∇∇uuu or higher
order gradients one can take into account not only the infinitesi-
mal surrounding of the material points. Point forces and force dis-
tributions along lines are basic loading conditions in mechanics.
Such boundary conditions along lines or on points result in singu-
larities of the displacement field. If one wants to introduce point
and line forces (or point and line displacements, respectively),
one has to generalize the concept of the Cauchy continuum. An
extension of the elastic energy of the continuum to second and
third gradients of the displacement lends itself to this purpose.
From the extensions of Mindlin [7] and Germain [8], that have
been further developed in e.g. [9], it becomes obvious why the
introduction of the first and second strain gradient allow a con-
tinuum to sustain boundary conditions on vertices and edges of
a body. Another important feature of strain gradient theories is

their regularization property. The strain gradient model in Aifan-
tis [10] is discussed with respect to its regularization property. It
is shown by Lazar and Maugin [11] that this model for small de-
formations still has singularities in the higher-order stresses. In a
following work they show for small deformations that for disloca-
tion problems in an infinite plane a second strain gradient theory
produces no singularities at all [12]. This result is confirmed with
applications in dislocation analysis [13].

3. Numerical Treatment

Many materials, although showing considerable complexity
in their structure and interior architecture, can be modeled at a
small length scale by a classical Cauchy medium. Such a model
can be characterised by a very large number of degrees of free-
dom even for a small sample. This choice, on the one hand, al-
lows us to use standard numerical tools based on finite element
methods, which are optimized for this kind of model. On the
other hand, the complexity of the considered continua makes the
use of such a model unsuitable from the point of view of com-
putational costs. Gradient models allow to obtain sufficiently ac-
curate solutions (see e.g. [14, 15]), comparable with those of the
Cauchy theory, but at much smaller computational costs. There
are many examples for materials where the corresponding contin-
uum models are obtained by a homogenisation procedure which
leads to micromorphic generalized continua. Gradient materials
are a very particular case of such micromorphic continua (see
e.g. [16, 17, 18, 19] for generalized continua with microstructure
and [20, 21, 22] for higher-gradient continua). Gradient models
involve an increase of material parameters necessary to describe
the more detailed characterization of deformations. Therefore,
specific tests, both experimental and numerical, can be designed
to identify such parameters as proposed in [23] or in [24, 25] for
dynamic properties as dissipation coefficients or parameters re-
lated to frequency response functions. With regards to the numer-
ical method to solve the governing equations, one of the recent
developments of the finite element method (FEM), Isogeometric
Analysis (IGA), can be used. Introduced with the aim of fill-
ing the gap between computer-aided geometric design (CAGD)
and analysis worlds, IGA has attracted the interest of many re-
searchers recently. The concept was introduced by the group
of Hughes in 2005, where they proposed to use NURBS (Non-
Uniform Rational Basis Splines) as the basis function both for
the geometry and the analysis [26]. NURBS are the industry
standard in CAGD, and using them as the basis of the analysis
will eliminate the need to approximate the geometry to have an
analysis suitable model, hence more accurate results. Besides,
using NURBS shape functions will provide a smoother solution
field (higher continuity). In 2011, they proposed a new data struc-
ture for IGA based on Bezier extraction of NURBS [27]. They
showed that using their method, it is possible to implement the
IGA concept in already-developed finite element codes at the cost
of calculating an extraction operator. In their method, numerical
integration of smooth functions will be carried out on C0 Bezier
elements using the extraction operator. It also makes it possi-
ble to use other spline technologies (such as T-Splines) as the
analysis basis without much difficulty. Numerical solution of the
gradient elasticity equations needs higher continuities of the so-
lution field. This is one of the issues where the IGA method can
show its advantages. In 2011, Fischer et al. [28] used IGA to
solve the problem of gradient elasticity in two dimensions and
exploited the higher continuity nature of the NURBS basis func-
tions to overcome the need of introducing auxiliary degrees of
freedom. Since then, many studies have been performed based
on the isogeometric analysis and its application in the gradient
elasticity theory; namely, [29, 30, 31] among others.
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