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Abstract 
 

The objective of this work is to determine the microstructure of the periodic composites with assumed effective isotropic properties 
constructed by using 2nd rank orthogonal laminates. The microstructure is recovered by the inverse homogenization process on a 
basic cell of periodicity Y uniformly divided into finite elements. At each element, the underlying material is characterized by three 
independent scalar parameters unlike in the 1-parameter SIMP-like models. These parameters constitute the set of decision variables 
for the optimization problem. The effective properties of the underlying material are calculated by the exact Lurie-Cherkaev-
Fiodorov formula. The optimization problem thus formulated is nonconvex and nonlinear and is solved by Sequential Linear 
Programming (SLP) method with a multipoint start. The effective moduli as well as the gradient of the objective function are 
computed according to the homogenization algorithm for periodic media [5]. In comparison to the widely utilised method based on 
the SIMP-like interpolation of the underlying material, the use of such a simple tri-parameter model of orthogonal laminates gives 
much better results, significantly reduces the number of the decision variables involved in the process and the time of computation.  
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1. Introduction 

The isotropic elastic mixtures composed of two isotropic 

materials of the bulk moduli (2>1) and shear moduli (2>1) 

are characterized by the effective bulk and shear moduli (*, *). 
In the planar problems the theoretically admissible pairs  

(*, *), for given volume fraction 𝜌0 of material (2, 2), lie 
within a rectangular domain determined by the Hashin-
Shtrikman (HS). The tightest bounds in 2D known up till now 
are due to Cherkaev and Gibiansky (CG) [2]. Theoretically 

admissible (*, *) for (E1, 1) = (1/20, 0.3), (E2, 2) = (1, 0.3) 

and = 0.5 are shown in Fig. (1) and Fig. (2). CG bounds are 

expressed by and  moduli instead of Young modulus E and 

Poisson ratio . The constitutive matrix E of the 2D problem 
shows relationships between these two sets of moduli. 
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Figure 1: CG area (greyed) an HS rectangle (dotted).  

The microstructures corresponding to the interior of the CG 
area can be of arbitrary rank, in the meaning of the hierarchical 
homogenization.  

The challenge is to design a microstructure whose effective 
properties correspond to the extreme points of the CG bounds. 
Some “close to” extreme composite structures are shown in [7], 
yet there are some points on the boundaries of the CG area for 

which the structure is not known until today (e.g. point D). 
Many optimization techniques have been used to attain the CG 
bounds, including the Method of Moving Asymptotes (MMA) 
[10], SLP [8] and other. Nevertheless, due to numerical 
properties of the FE method used for homogenisation, the 
problem is still tough to solve and only approximate solutions 
can be obtained. 

 

Figure 2: Contour lines of E and  in the CG area (thick, black) 

and HS bounds (thin, grey) in (, ) coordinates. 

2. Inverse homogenization 

The inverse homogenization problems state the questions on 
the optimal layout of several materials usually with given 
proportions within Y. Here, optimal means such a layout that 
gives assumed homogenized properties E* of the periodic 
composite. As such, the problem can be treated as a topology 
optimization problem: to minimize the gap between the given 
E* and the calculated EH. Here, the minimized objective 

function P() has a form: 

         2**2** //  P  (2) 

The conventional process of the optimization is carried out 

on the Y uniformly divided into n finite-elements k. Let 

Ei=E(i, i). For each element a variablek is assigned such 

that: k=0  k. E1, k=1  k. E2. By creating a few 

configurations of {k}, i.e., layouts of materials, one can try 
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to get the expected result described by the assumed E*. Solution 
of such a pure 0-1 element-wise optimization problem by some 
‘hard-kill’ method or others does not guarantee achieving the 
global or even local optimum. The relaxation of the problem 

allows for variation of k  0, 1 i.e. the material 
characteristics in each element are dependent on “pseudo-

density” variables k. This requires, for intermediate values of 

k, a proper calculating of E(k) by adopting some material 
interpolation scheme, e.g., SIMP [1], RAMP [9], GRAMP [3] 

or HS. This point is crucial for relaxed topology 
optimization problems because the final solution must be 

characterized only by k = {0, 1}.  

2.1. Orthogonal laminate of 2nd rank as a underlying micro-
structures 

Instead of artificial isotropic one-parameter models, the 
multi-parameter (•) microstructures (MpM) can be adopted as 
underlying structures. For laminates, used as MpM, calculating 
Ek(•) can be done exactly. For the 1st rank in-plane laminate, 
composed of periodically repeating layers of materials of any 
constitutive properties, the effective constitutive matrix EI is 
given by Lurie-Cherkaev-Fiodorov formula (2). 
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where (for selected basis): 
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In above, H is the matrix representation of Hooke’s tensor 

and  is the angle of the direction of lamination, for details see 
[4]. The 1st rank laminate EI thus obtained can be used for the 
construction of the 2nd rank laminate EII, calculated again by 
formula (3). Assumed MpM model of the laminate of two 

isotropic materials with orthogonal layers i.e. = {90, 0} can 

be described by three parameters , ,  as shown in Fig. 3. 

 
Figure 3: Construction of the 2nd rank orthogonal laminate. 

The first lamination, (= 90, I= 1 – consist of 

 (1 – ) /I and (1 – ) I fractions of materials E1 and E2 
respectively, determines the properties of EI. The next one, for 

 = 0 contains 1 –  fraction of EI and  fraction of E2 gives 

EII next rotated by the angle which defines the orientation of 
the laminate in the coordination system of the cell Y.  
Such model allows for the exact description of: 

 isotropic material,  = 0  EII  E1,  = 1  EII  E2,  

 1st rank orthotropic laminate for or and > 0, 
 2nd rank orthotropic laminate. 

3. Results 

To achieve the boundary of the CG domain, variety of 
isotropic composites are constructed based on EII underlying 

laminates. At the starting point, the triplets (k, k, k) are 
selected randomly yet satisfying the isoperimetric condition 

= 0.5. The obtained results (black dots) for 128 x 3 decision 
variables are presented in Fig. 4. Grey lines show the convex 

hull of results obtained for 3200 decision variables each (single-

parameter elements) by using the HS interpolation scheme. 

 

Figure 4: Effective ● (H, H) obtained for assumed  (*, *) 
(connected by dotted lines respectively). 

4. Final remarks 

A new inverse homogenization technique is developed to 
construct extremal microstructures of effective isotropic moduli. 
The constructed layouts correspond to the points lying very 
closely to the contour of the CG domain. The number of the 
decision variables for the proposed MpM model is nearly  
10 times smaller than for first rank microstructures, which 
significantly reduces the time of computation. The local basic 
cell problems are set on a hexagonal cell Y possessing rotational 

symmetry of angle 120. Such a non-conventional choice of a 
basic cell generates automatically the family of isotropic 
mixtures. It should however be noted that the MpM approach 
causes great limitations – the resulting solution by definition is 
limited to a narrow class of the assumed microstructures – here 
to orthogonal laminates of at most 2nd rank.  
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