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Abstract 

 

The numerical analysis of thermal damage process proceeding in biological tissue during laser irradiation is presented. Heat transfer 

in the tissue is assumed to be transient and two-dimensional. The internal heat source resulting from the laser irradiation based on the 

solution of diffusion equation is taken into account. The tissue is regarded as a homogeneous domain with perfusion coefficient 

treated as dependent on tissue injury. At the stage of numerical computations the boundary element method and the finite difference 

method have been used. In the final part of the paper the results obtained are shown. 

Keywords: bioheat transfer, tissue injury, laser-tissue interaction, boundary element method, finite difference method 

 

1. Introduction 

Laser irradiation on biological tissue often leads to the 

temperature elevation that can cause irreversible damage by the 

alteration of thermophysical and optical properties of tissue. 

Consequently, parameters applied in mathematical models of 

heat transfer in biological tissue domain can be regarded as 

temperature-dependent or tissue damage-dependent. Such kind 

of processes are usually modeled by the so-called Arrhenius 

injury integral in which the reaction rate increases exponentially 

with the temperature [2]. 

To describe the light propagation in biological tissues the 

different mathematical models can be taken into account. It is 

also known that tissues are characterized by a strong scattering 

and weak absorption in the so-called therapeutic window 

(wavelengths between 650 and 1300 nm). For this reason in this 

paper the diffusion approximation is applied [3,4]. 

2. Governing equations 

The 2D domain of homogeneous biological tissue of 

rectangular shape Ω subjected to the laser action, as shown in 

Figure 1, is considered. 

 

 

 

Figure 1: The domain considered 

A transient heat transfer in biological tissue is described by 

the Pennes equation in the form [1-3] 

2: perf las metcT T Q Q Q     x  (1) 

where  [Wm1K1] is the thermal conductivity, c [Jm3K1] is 

the volumetric specific heat, Qperf, Qmet and Qlas [Wm3] are the 

heat sources connected with the perfusion, metabolism and laser 

radiation, respectively, while T = T(x, t) is the temperature. 

In the current work the metabolic heat source is assumed as 

a constant value while perfusion heat source is described by the 

formula 

 ( , ) ( , )perf B BQ t c w T T t x x   (2) 

where w [s–1] is the perfusion coefficient, cB [Jm–3K–1] is the 

volumetric specific heat of blood and TB corresponds to the 

arterial temperature [2,3]. 

The source function Qlas connected with the laser heating is 

defined as follows [3] 

( , ) ( ) ( )las aQ t p t  x x   (3) 

where a [m
–1] is the absorption coefficient, (x) [Wm–2] is the 

total light fluence rate and p(t) is the function equal to 1 when 

the laser is on and equal to 0 when the laser is off. 

The total light fluence rate  is the sum of collimated part c 

and diffuse part d [3] 

( ) ( ) ( )c d    x x x   (4) 

The collimated fluence rate is given as [1,2] 

2

2
0 12

2
( ) exp exp( )c t

x
x

r

 
     

 
x  (5) 

where 0 [Wm–2] is the surface irradiance of laser, r is the radius 

of laser beam and t [m
–1] is the attenuation coefficient defined 

as [2-4] 

(1 )t a s a sg           (6) 

where s and s [m–1] are the scattering coefficient  and the 

effective scattering coefficient, respectively, while g is the 

anisotropy factor. 
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To determine the diffuse fluence rate d the steady-state 

optical diffusion equation should be solved  [3,4] 

2: ( ) ( ) ( ) 0d a d s cD        x x x x  (7) 

where 
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is the diffusion coefficient. 

The Eqn (7) is supplemented by boundary condition 
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where n is the outward unit normal vector. 

On the tissue surface 0, subjected to a laser irradiation, the 

Pennes equation (1) is supplemented by boundary condition 

0 : ( , ) ( )ambq t T T  x x   (10) 

where  [Wm2K1] is the convective heat transfer coefficient 

and Tamb is the temperature of surrounding, while on the internal 

tissue surface c,  the no-flux condition is accepted. The initial 

distribution of temperature is also known. 

Damage of biological tissue resulting from temperature 

elevation is modelled by Arrhenius injury integral, defined 

as [2, 3] 
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where R [J mole–1K–1] is the universal gas constant, E [J mole–1] 

is the activation energy and P [s1] is the pre-exponential factor. 

The criterion for tissue necrosis is (x) ≥ 1. 

The main assumption of the Arrhenius formula is that the 

damage of tissue is irreversible, so even in the case of very little 

rise and lowering of temperature the tissue remain damaged. On 

the other hand, at the initial tissue heating, when the 

temperature is moderate, that is between 37C and 45-55C, the 

blood vessels in the tissue become dilated without being 

thermally damaged.  

In order to modeling the possibility of withdrawal of tissue 

injury, when the laser action is ceased, the TTIW algorithm 

(thermal tissue injury withdrawal algorithm presented in 

Ref. [2] has been applied. 

3. Results of computations 

The bioheat problem (1) has been solved using the 1st 

scheme of the BEM for 2D transient heat diffusion while the 

optical diffusion equation has been solved by the finite 

difference method. 

The domain considered  has size 44 cm. The laser 

irradiation 0 has been assumed as equal to 3 [W cm2] with the 

duration 100 s. 

Additionally the perfusion coefficient is treated as 

dependent on tissue injury, so it’s defined as [2] 
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where w0 is the initial perfusion coefficient. 

The values of coefficients for the interval from 0 to 0.1 

respond to the increase of perfusion coefficient caused by 

vasodilatation up to the value  = 0.05 (maximum of the 

function) and the beginning of narrowing of blood vessels, 

while for the interval 0.1 to 1 they reflect blood flow decrease 

as the vasculature going to shut down (thrombosis). 

In the Fig. 2 and 3 the courses of injury integral and 

perfusion coefficient at the selected points of the domain are 

presented (c.f. Fig. 1). 

 

 

 
Figure 2: Courses of injury integral  

 

 

 
Figure 3: Courses of perfusion coefficient w 
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