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Abstract 
 

This work presents the new method of Lyapunov Exponents (LE) estimation and its practical application for control system tuning. 
By means of the LE estimation method appropriate parameters of the regulator have been found. A mechanical control object  - 
inverted pendulum - has been presented. Equations of the system have been found by Lagrange approach. Identification procedure of 
the nonlinear control object with discontinuity has been described. From the set of possible parameters of the regulator, the ones of 
best performance have been selected. The foregoing work proves that proposed method is efficient and results in great performance 
of the regulator. 
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1. Introduction 

Depending on a dynamical system type and a kind of 
information that is useful for its investigations, different types 
of indexes or coefficients describing dynamics can be applied. 
In practise, Lyapunov exponents are one of the most commonly 
applied tools. These numbers determine the exponential 
convergence or divergence of trajectories that start 
infinitesimally close to each other. One of the classical 
algorithms for calculating Lyapunov Exponents (LE) for 
continuous systems has been developed by Benettin et al. [2] 
Alternative method based on synchronization phenomena was 
elaborated by Stefański [5].  

Properties of LE enable their introduction in control 
systems. The general purpose of a regulator is to force the 
control object to follow a desired trajectory despite existing 
disturbances. Therefore, the evaluation and tuning of controllers 
seems to be a perfect field of LE practical application. Negative 
value of the Largest Lyapunov Exponent (LLE) ensures 
stability of the system. Moreover, the lower the value of LLE, 
the faster average, exponential rate of perturbation rejection. 

However, in order to make use of LE in the field of control 
systems, a fast and simple method of LLE estimation is 
necessary. Such method has recently been elaborated [3]. Its 
applicability to control systems has been confirmed by the 
previous papers [1, 4].   

In this paper, the method presented in [3] is applied to 
improve the performance of a real inverted pendulum by 
minimizing the LLE value of the closed-loop control system. 
The control object is nonlinear and discontinuous. The cause of 
discontinuity is dry friction on bearings. Therefore, applicability 
of the linear theory is limited. However, it is shown that the 

method of controller tuning based on LLE can be  used 
successfully for such objects. 

2. The method 

Assume that an autonomous dynamical system is described 
by the set of differential equations in the form: 
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where x is the state vector and f is a vector field that (in general) 
depends on x. As it has been shown in the previous work [3], 
the value of LLE for such system can be estimated from the 
following expression: 
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where z1 is a perturbation vector. The approximate value of LLE 
(λ1) is obtained by averaging values of λ*

1 from subsequent 
computation steps. For long enough time of integration, the 
average value of λ*

1 converges to the LLE. 

3. The regulation object 

The object under consideration is an inverted pendulum 
presented in Fig. 1. The pendulum bar is attached to a moving 
cart. The cart is constrained to move in the horizontal direction. 
The pendulum rod is free to oscillate around a pivot point fixed 
to the cart. The objective of the system is to control horizontal 
position of the cart x(t) so that the bar remains in the upright 
vertical position. Such position would be unstable without the 
appropriate control of the cart position and velocity. 
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Figure 1: Scheme of the inverted pendulum system 

If the drive of the cart is stiff enough, one can assume that 
the position of the cart x(t) is not influenced by the motion of 
pendulum bar. In such case the description of the regulation 
object is limited to one equation, which can be easily found 
using Lagrange approach. 

4. Identification of model parameters 

In order to perform a realistic simulation of the regulation 
object, all of its parameters must be estimated with the 
sufficient accuracy. Firstly, the drive has been identified. For 
the purposes of identification the velocity of the motor has been 
recorded after the application of a step input signal. The drive 
has been identified as a 1st order, linear, time-invariant system. 
In order to find the values of friction parameters, free vibrations 
of the pendulum have been investigated. The assumed equation 
of pendulum free vibrations is as follows: 
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where b and c are friction coefficients to be identified, g is 
gravitational acceleration and other symbols are explained in 
Fig. 1. Such equation does not have an explicit solution. In 
order to find the values of parameters, nonlinear least-square 
method has been applied. Fig. 2 presents experimentally 
recorded free vibrations (dotted line) together with the 
simulation data (solid line). It can be noticed that the quality of 
identification is very fine. 

 
 
Figure 2: Free vibrations of the pendulum, recorded data (dotted 
line) and simulation results (solid line) 

5. Regulator tuning 

The assumed type of regulator is PI (proportional / integral) 
with additional term proportional to position of the cart: 
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where u(t) is the output signal and kp1, kp2 and TI are regulator 
parameters to be determined. The simulation program has been 
created to simulate behaviour of the system with an initial 
perturbation for each set of parameters from a selected range. 
On each simulation, LLE has been calculated using the method 
described in paragraph 2. The set of parameters corresponding 
to the lowest value of LLE ensured that the average, exponential 
rate of perturbations rejection was as high as possible. The 
comparison of simulation results between initial guess 
parameters and the optimized ones is presented in Fig. 3. 
 

 
Figure 3: Results of simulation for initial guess parameters 
(dashed line) and parameters corresponding to the lowest LLE 
(solid line)  

6. Conclusions 

It has been confirmed that the new method of LLE 
estimation can be easily applied for the control system 
parameters tuning, even if the control object is nonlinear and 
discontinuous. The lowest value of LLE ensured that the 
average, exponential rate of perturbations rejection was as high 
as possible. In future, it is planned to use the method in more 
sophisticated control systems, such as optimal controllers or 
neural network controllers. 
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