
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

Nonlinear vibrations of a three blades rotor

Jerzy Warminski1∗
1Department of Applied Mechanics, Lublin University of Technology

Nadbystrzycka 36, 20-618 Lublin, Poland
e-mail: j.warminski@pollub.pl

Abstract

Dynamics of a rotating structure composed of a rigid hub and three flexible blades is presented in the paper. The nonlinearmodel of the
beam takes into account bending, extension and nonlinear curvature. The impact of geometric nonlinearity on dynamics of the rotating
structure is presented in terms of nonlinear modes of natural vibrations and resonance curves of the forced system. The resonance zones
are obtained for large oscillations induced by torque expressed by constant and periodic components and supplied to thehub.
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1. Introduction

Rotating structures have been studied for many years taking
into account different assumptions depending on the beam mod-
els. Nonlinear models of thin beams as an extension of classical
Bernoulli-Euler theory are presented in [1]. The beam deforma-
tions have been obtained assuming the inextensionality condition
and a nonlinear curvature which is essential in a case of large os-
cillations. The model of coupled flexural–torsional vibrations of
the rotating beam for helicopter blades applications is proposed in
[2], where longitudinal deformations and a nonlinear beam cur-
vature have been taken into account. Recently, a critical review
of existing models of the rotating cantilever beams has beenpub-
lished in [3]. Two analytical models, von Karman model and
the inextensible beam model have been compared with the finite
element method results. The differences between models forse-
lected structural parameters as well as the effect of angular veloc-
ity on the softening or hardening phenomenon have been shown.

The development of new composite materials which are non-
homogeneous and also have different mechanical propertiesin
different directions enforced an elaboration of new modelsof the
rotating beams. The models of rotating thinned–walled compos-
ite blades with box cross-sections are presented in [4, 5]. Coupled
composite beam deformations, nonconstant angular speed and re-
lated nonlinear terms are included in the formulation. However,
constitutive equations have been assumed to be linear and geo-
metrical nonlinear terms, essential in a case of large deforma-
tions, have been neglected.

In this paper a model of a rotor composed of three flexible
beams fixed to a rigid hub is studied. The nonlinear beam model
is adopted from paper [6] and modified regarding the latest pub-
lication [3] and then applied to the full rotor dynamics.

2. Model of the rotating structure

A model of the considered rotating structure is composed of
a rigid hub and three flexible blades which may oscillate in the
plane of rotation. The beams are modelled by Bernoulli–Euler
beam theory. However, due to assumed large oscillations, the
geometrical nonlinear terms are taken into account. The experi-
mental setup of the structure is presented in Fig. 1(a). External
torqueM(t) supplied to the hub includes of constant and periodic
components, thus the hub may rotate and oscillate. Depending on

amplitude and frequency of excitation as well as structuralparam-
eters, the vibration modes of flexible beams may be differentthan
in linear case (Fig. 1b).

In order to derive equations of rotor dynamics we introduce
one fixedX0, Y0 and rotatingxi, yi coordinate frames for ev-
ery single beam. The longitudinal and transversal displacements
ui(xi, t) andvi(xi, t) of an elementary segmentdli located in
pointB are defined in the rotating coordinate frame, as presented
in Fig. 1(c). Hub rotation is defined by angleψ(t).

Equations of motion are derived assuming Bernoulli-Euler
beam theory and considering that the strain of the elementary

segment is defined as:ǫi =
dLi−dxi

dxi
=
√

(1 + u′

i)
2 + v′2i − 1,

where prime is a space derivative with respect toxi coordinate.
Due to large oscillations however, a curvature of the beam isas-

sumed as nonlinear and defined asκi = dφi

dli
= φ′

i

(

dli
dxi

)

−1

,

whereφi represents an angle between axisxi and a tangent to the
deformed beam at pointB′. Taking into account the nonlinear
curvature we get

φ′

i =
v′′i (1 + u′

i)− v′iu
′′

i

(1 + u′

i)
2 + v′2i

(1)

Potential energy of a rotor composed ofn beams has the form

V =
1

2

n
∑

i=1

Li
∫

0

(

Mbi
∂φi

∂li
+Niǫi

)

dxi (2)

whereMbi = EiIi
dφi

dli
, Ni = EiAiǫi, and dφi

dli
= φ′

i

(

dli
dxi

)

−1

,

Ei is Young modulus,Ii a geometrical moment of inertia with
respect to the neutral bending axis and,Ai area of a cross-section
of thei–beam. Kinetic energy of the whole system is defined as

T =
1

2
Jhψ̇

2 +
n
∑

i=1

1

2
ρi

Li
∫

0

{

(

u̇i − ψ̇vi
)

2

+
[

(xi +R0 + ui) ψ̇ + v̇i
]2
}

dxi (3)

where,Jh is mass moment of inertia andR0 radius of the hub,ρi
denotes mass of thei–beam per its unit length.
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Figure 1: Three blades rotor model: (a) view of the experimental setup, (b) scheme of oscillations of the hub–3 beams structure and,
(c) notation and sets of coordinates

The transversal and longitudinal displacements are expressed
by small parameterε assuming that the angle of rotationψ and
transverse displacementsvi are ofε order while longitudinal dis-
placementsui are ofε2 order. In the final form for kineticT and
potentialV energies we take into account nonlinear terms up to
the second order. Substituting them into the extended Hamilton

principle of the least action,
t2
∫

t1

(δT − δV + δW ) dt = 0, where

δW is virtual work of external forces, we get a set of partial dif-
ferential equations of motion (PDEs)
(

J̃h +

n
∑

i=1

J̃bi

)
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ε2
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= 0 , i = 1 . . . n (4)

and associated boundary conditions

for xi = 0, ui = 0, vi = 0, v′i = 0

for xi = li, u′

i = 0, vi
′′ = 0, v′′′i = 0 (5)

All coordinates and coefficients are dimensionless and nor-
malised to the first beam parameters. Dimensionless time has

been defined as̃t = ω̃t, whereω̃ =
√

E1I1
ρ1L

4

1

and, J̃h = Jh

ρ1L
2

1

,

J̃bi =
li
∫

0

ρ̃i (R0 + x)2 dx, ρ̃i = ρi/ρ1, li = Li/L1, αi =
AiL

2

i

Ii
.

The first of Eqs. (4) represents dynamics of the hub coupled
by nonlinear and inertia terms with dynamics of the beams which
are governed by the second and the third of Eqs. (4). A number of
equations depends on number of blades, in a case of three blades
rotor we get a set of seven coupled nonlinear PDEs.

3. Concluding remarks

The nonlinear model of the rotating hub–beams structure has
been derived considering extended Bernoulli-Euler beam theory

by taking into account nonlinear geometrical terms arisingfrom
large oscillations. The model is given by a set of coupled nonlin-
ear PDEs which include transverse and longitudinal oscillations
of the beams as well as hub dynamics. The hub plays an essential
role because it couples motion of all blades. The challenging task
is to find an analytical solution of the mathematical model. It can
be done by a direct attack of PDEs or to elaborate the method of
the problem reduction from PDEs to ODEs. The latter approach
may be based on a linear or nonlinear modes projection with fur-
ther simplification neglecting longitudinal inertia terms, which
can be accepted only for thin beams. In the final formulation ro-
tating beam dynamics will be reduced to transverse oscillations
presuming a proper inclusion of longitudinal loading. Thenthe
obtained nonlinear ODEs of the full hub–blades structure will en-
able analytical and numerical investigations of resonancezones
and bifurcation scenarios. Both mentioned approaches willbe
applied in order to asses solutions by different approaches.
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