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Abstract 
 

The present paper concerns the problem of Pareto optimal distribution of isotropic material properties: bulk and shear moduli or 
Young modulus with prescribed, not necessarily uniform, distribution of Poisson’s ratio in the Isotropic Material Design (IMD) and 
Young Modulus Design (YMD) method, respectively. The minimized objective function is the weighted sum of compliances 
corresponding to n independent loading conditions. The only isoparametric condition is the integral of the unit cost of the design  
assumed to be equal to the trace of the elastic moduli tensor C. Both the methods: IMD and YMD, reduce to the auxiliary 
minimization problem involving statically admissible stress fields corresponding to the subsequent loading conditions.  
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1. Formulation of the IMD/YMD vector optimization 

The paper refers to the current research in the free material 
design, cf. Refs [1-3]. The isotropic material design (IMD) 
proposed in Ref. [2] and the Young modulus design delivered 
recently in Ref. [3] are extended to the multiple load cases. 

Consider the problem of vector minimization of the 
compliances of a structure subjected, non-simultaneously, to 
n≥1 traction loads tα, α=1,2,...,n acted on the given part Γ1 of 
the boundary ∂Ω of the given spatial design domain Ω. Let us 
define  4-th rank tensors 
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where ei∈R3, i = 1,2,3 is orthogonal basis in three dimensional 
Euclidean space parameterized by the Cartesian system x = (x1, 
x2, x3) and II=(1/2)(δik δjl +δil δjk)ei⊗ej⊗ek⊗el - the identity tensor 
in the space of symmetric, 4-th rank tensors Es4. The design 
variables are: the bulk k = k(x) and the shear moduli µ = µ(x), 
or:  Young’s modulus E = E(x) (for prescribed in Ω field of 
Poisson ratio ν = ν(x)) defining the non-homogeneous, 
isotropic, 4-th rank Hooke tensors C: 
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x∈Ω, for IMD and YMD method, respectively. Let us define 
the linear form  
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where v=(v1,v2,v3) is a virtual, kinematically admissible  field 
satisfying the condition v = 0 on the given boundary (support) 
Γ2⊂∂Ω, Γ1∩Γ2=∅. The compliance corresponding to the α-th 
load is defined by 

( ) ( )fα α α℘ =C u ,        (4) 

where uα=(u1α, u2α, u3α) is the displacement field for the α-th 
load.  

The formulation of the IMD, or YMD problem: find Hooke 
tensor C minimizing all compliances ℘α = ℘α(C), α = 1,2,…,n  
at the same time and satisfying the cost (isoparametric) condi-
tion 

 0tr ,dx E const
Ω

= Λ Λ = Ω =∫ C ,       (5) 

where E0 is the referential elastic modulus, is mathematically 
incorrect. The requirement of minimizing all objectives ℘α 
simultaneously may be replaced, see Ref. [4], by the require-
ment of finding all Pareto optimal Hooke tensors C*. One of the 
most common method of finding Pareto optimal solutions is the 
weighted sum approach that transforms the vector optimization 
problem into scalar valued optimization problem: find feasible 
Hooke tensor C* minimizing convex combination of the com-
pliances 
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corresponding to subsequent load conditions tα, the importance 
of which is reflected in weighting factors ηα forming the vector 
of weights η = (η1,η2,…,ηn)∈Rn. Let ( )αΣ Ω  be the set of ad-

missible stresses ( )ijτ=τ  corresponding to the traction load tα. 
By inverting (2) and expressing the compliance (4) by stress 
fields, according to Castigliano’s theorem it is possible to re-
formulate the problem (6) for arbitrary but fixed vector of 
weights η=(η1,η2,…,ηn)∈Rn as follows: find two fields * *,k µη η , 

or field *Eη , fulfilling (5) such that 
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or 
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in IMD or YMD method, respectively. Let us define the two 
norms, denoted by the same symbol ⋅ :  
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for IMD and YMD cases, respectively. In the above formulae  
ασ  being the second rank symmetric tensors. The most im-

portant result is the following lemma:  
let nR∈η  be arbitrary but fixed vector of weights. Then 

the non-negative fields: 
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are solutions of the IMD problem (7) and the non-negative field  
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is the solution of the YMD problem (8), where  
( ) ( ) ( )1

1,..., ...n
n∈Σ Ω × × Σ Ωτ τ( (       (13) 

is the solution of the following problem  
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with the norm involved defined by (9)1 or (9)2 for IMD and 
YMD, respectively. 

2. Example: Pareto-optimal cantilever and final remarks 

The IMD and YMD problems (9)1,2 are solved numerically 
by using an interpolation of statically admissible stress fields, 
see e.g. Refs [2,3].  
The example concerns the three-dimensional prismatic, 
cantilever rod L1×L2×L3 = 0.7×0.7×2.0 [m], clamped along its 
bottom facet, see Fig.1. The upper horizontal facet is subjected 

to two independent, centrally applied forces ( )1 1
1 ,0,0

T
t=t , 

( )2 2
20, ,0

T
t=t modeled by the weight functions in such a way 

that the resultant surface integrals i
A

t daα∫ , (i, α = 1, 2), 

{ }3 3A x x L= ∈∂Ω =  are equal to 1.0 [N] and are causing 
independent lateral bending deformations in x1x3 and x2x3 planes 
(cases I and II). Calculations were carried out by IMD and 
YMD methods for two variants of vector of weights: 

( )0.5 , 0.5=η  and ( )0.9 , 0.1=η , see Fig.2. The unity value of 
elastic modulus in (5) is assumed, i.e. E0=1.0 [N/m2 ]. The final 
optimal layouts reflect the symmetry and asymmetry of the 
weight factors applied. 
 

 
Figure 1: Three-dimensional slender body, clamped at the 
bottom, subjected to two independent loadings  

   

   

Figure 2: From top to bottom: first: ( )0.5 , 0.5=η  and second: 

( )0.9 , 0.1=η variant of loading. From left to right: Pareto-

optimal distribution of bulk *kη  and shear *µη  modulus (IMD 

version) and Young’s modulus *Eη  for 0.3ν =  (YMD version). 
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