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Abstract

In this paper an idea of the force identification in bolts was proposed. It takes advantage of the elastic wave propagation phenomenon
which are introduced and measured by piezoelectric transducers. An experimental test was performed on the bolt of flange connection.
The connection was mounted in a static test machine and loaded with tension. It was noticed that force changes influence signals
measured by sensors, what was reflected also in principal components calculated. The obtained patterns data base was then used for the
training artificial neural networks (ANNS). Preliminary obtained results showed that ANNs are able to predict the force in bolts with
reasonably well accuracy, but their generalization ability should be improved.
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1. Introduction

Force measurement in bolts is important in many industrial
and engineering applications. Most often they are carried out
during the structure assembly using a torque wrench. More pre-
cise devices are usually used in experimental tests of prototype
connections, in order to study the behaviour of their individual
components. The second area are non-destructive tests (NDT)
and structural health monitoring (SHM) systems which enhance
safety and reliability of structures.

There exists also a group of joints where a level of pre-
tension force influence the strength of a slip resistance connec-
tion [2]. In this case, pretension force changes over time may
become a very important issue, especially in cyclically-loaded
constructions such as bridges, telecommunication towers or wind
turbines.

The idea proposed in this paper takes advantage of the elastic
wave propagation phenomenon. It can be expected that even rela-
tively small change in a bolt force will affect the signals measured
(its time of flight, amplitude, frequency, etc.) [1, 3].

2. Laboratory tests

A flange connection consisted of six bolts M16 of class
5.8 was investigated in a static test machine. Four bolts were
equipped with washer strain load cells. One of them was also
instrumented with piezoelectric transducers (Fig. 1a) in order to
excite and measure elastic wave signals. An axial force history
measured on this bolt (no. 4) by washer strain cell was shown in
Fig. 1b. The test was terminated at the time when some of the
bolts have been torn off.

2.1.  Laboratory equipment

The laboratory setup consisted of a signal generator (TTi)
where an excitation was defined in the form of 2.5 sine wave mod-
ulated by Hanning window. Then the signal was amplified and
split to the actuator and the synchronization channel. A digital os-
cilloscope (LeCroy) was used to store signals received from sen-
sors. Two piezoelectric transducers were mounted on the bolt’s
head (actuator and sensor) and one at the end of its shank (sensor).
The sensor wax was used do mount transducers, which enables

their non-invasive recovery. Only sensor cables were temporary
fixed in single points with adhesive applied hot.
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Figure 1: (a) The flange connection investigated; (b) force history
received during the static test from a washer strain cell installed
on the bolt no. 4.

2.2.  Elastic waves

Elastic wave signals were excited and recorded with fre-
quency close to 0.5 Hz. Until the connection was destroyed, 3902
signals were stored from each sensor. Exemplary signals received
at both sides of the bolt for selected force levels were shown in
Fig. 2. It can be noticed that force variations affect also the sig-
nals measured (mainly through amplitude changes).

The elastic wave signals were filtered and principal compo-
nents analysis were performed in order to reduce the data size [4].
The calculated components and the force values measured have
formed a pattern database used for ANNs training.

Preliminary simulations have shown that the ANNSs training
with data related with the sensor placed at the shank end have
caused that the learning process was more stable and the standard
deviation of results was lower than in case of the sensor on the
bolt’s head. Therefore, it was decided at this stage of investiga-
tion, that only pitch-catch signals will be used for the purpose of
training the diagnosis system.
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Figure 2: Elastic wave signals measured by piezoelectric trans-
ducers installed on the bolt’s head end the shank’s end.

3. ANNSs and their architecture

A force identification provides information about the pre-
dicted value of that force with respect to parameters that are sen-
sitive enough to its changes. The correct selection of these pa-
rameters is the most important issue in any identification task.

For the mentioned task feedforward ANNs are commonly
used. They consist of an input (first) layer, usually one or two
hidden layers and an output layer. The number of elements in the
input/output layers is determined by the size of a pattern database.
Improved accuracy of the neural algorithm may be obtained by
tuning its architecture. Therefore, a series of simulations have
been carried out to find the most appropriate length of the input
vector and the number of neurons in the hidden layer.

First, the input vector consisted of 10 principal components,
while the number of neurons in the hidden layer was varying from
4 to 28. From the set of 3902 patterns, 867 and 433 were selected
with constant distribution for testing and validation vectors (to-
gether 1/3 of the patterns). For each variant simulations of ANNs
training were repeated 50 times. The obtained results of mean
testing errors were shown in Fig. 3a. It can be noted there that the
value of 16 neurons in the hidden layer provided very accurate
prediction results.
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Figure 3: Testing error variation with respect to (a) the number of
neurons in the hidden layer and (b) the size of the input vector.

Next, the input vector length was varying from 4 to 28 princi-
pal components. The obtained results were shown in Fig. 3b. In
this case, the testing error level has stabilized from length of 12
components.

Finally, it was assumed that in the studied case the recom-
mended ANNs architecture should consist of 12 principal com-
ponents on the inputs vector and 16 neurons in the hidden layer.
Then the averaged error of the force prediction should be even
lower than 0.15 kN.

4. Classification and force prediction

One of the SHM system applications is to warn against ex-
cessive loads and to count such the events in order to estimate re-

maining time of a safety usage. Detection of the operating phase
(e.g. elastic or plastic) of the structural members or connections
can be achieved using elastic waves and ANNs for the classifica-
tion task.

Moreover, it can be seen in Fig. 1b, that the case, when an ax-
ial force in the bolt equals to -70 kN does not provide sufficient
knowledge whether it is in the plastic or the elastic range. There-
fore, it would be advantageous if the task of force prediction is
combined with the classification of operating phases.

Therefore, based on the investigated connection, it was as-
sumed that the measured signals will be divided into two groups
at the point of a local force minimum (exactly for the argument
2061, see Fig. 1b). Next, two approaches were studied in order
to assign the measured signal to the appropriate classes. Auto-
associative neural networks were used in the first case and the
ANN for regression tasks in the second case. Basically, it was
possible to achieve a very accurate classification in both these
cases.

Exemplary obtained ANNS training results were shown in Ta-
ble 1, where testing errors of the force prediction and the classi-
fication of operating phases were collected. They confirm a rela-
tively good agreement with the target values.

Table 1: Testing errors of the force prediction and classification

Output MSE R?
Prediction 0.9994 0.9999
Classification 0.9886 0.9908

5. Conclusions and final remarks

The obtained results have showed that ANNS are able to find
the relation between the changes in elastic wave signals and force
variations. In the studied example, where the laboratory test on
the single bolt were carried out, principal components seem to
contain information suitable enough for precise identification of
axial forces.

In the future work the set of training patterns is going to be
extended with data related to experimental tests performed on the
wider group of bolts. The usefulness of other signal parameters
such as time of flight or wavelet coefficients are also worth check-
ing out.

References

[1] Ding, X., Wu, X., Wang, Y., 2014. Bolt axial stress mea-
surement based on a mode-converted ultrasound method us-
ing an electromagnetic acoustic transducer, Ultrasonics, 54,
pp. 9142A8920, 2014.

[2] Fric, N.T., Budjevac, D.V., Miskovic, Z.M., Veljkovic,
M.B., Markovic, Z.A. and Dobric, J.D., Calibration of
the high strenght bolts for measuring of the pretension
force, Eighth International Conference on Advances in Steel
Structures, 1-10, Lisbon, Portugal, July 22-24, 2015.

[3] Kim, N. and Hong, M., Measurement of axial stress using
mode-converted ultrasound. NDT&E International, 42, pp.
1642AS169, 2009.

[4] Nazarko, P., Soft computing methods in the analysis of elas-
tic wave signals and damage identification, Inverse Prob-
lems in Science and Engineering, 21 (6), pp. 945-956,
2013.



