
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

* Corresponding author. Tel.: +7 812 428 4492.

A Containerized CAD to FEM Infrastructure Solution Based on Open Source Projects

Olga Sedova1* and Oleg Iakushkin1

1 Department of Computational Methods in Continuum Mechanics, Saint Petersburg State University

Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
e-mail: o.s.sedova@spbu.ru

Abstract

In this paper, we consider concept of a system, encapsulating different steps from the creation of model geometry via CAD to various
tests and stress testing simulations using FEM. This concept considers an engineer that can act as a programmer, and that all
necessary steps from modelling to the declaration of boundary conditions are provided in form of source code. We propose an
implementation of such software. In its development, we are using: Python programming language; Jupyter framework for visual
representation of user’s workspace; pythonOCC and FeniCS libraries that implement CAD and FEM algorithms; utilities such as
GMSH and VTK.
Our platform prototype is tested on a dynamically expandable multitenant cloud system and is presented to end users in form of a
web service, providing all the necessary computing resources to users on demand. At the same time system can be deployed locally
for prototyping and non-resource-intensive workloads. To achieve this, the system was isolated via Docker containerization engine.

Keywords: FEM, CAD, Cloud, Software, opensource, programming

1. Introduction

At the prototyping stage tasks of CAD geometry modelling
systems often appears in conjunction with structural analysis via
FEM. Yet the variety of file formats and application interfaces
restrict smooth flow that reflects on the rate of development
progress and slows down speed of iterations. This leads us to
the task of creating a system that would bring together the work
process from CAD to FEM within a single application.
However, in practice, the solution of such problem encounters
three main difficulties: providing the necessary functionality
within a single user interface, computing needs of various task
segments, the choice of parameters to be displayed to a user at
any given moment. [1]

2. Our concept

We propose to consider an engineering as a programmer. In
the case of pre-built components that implement the processing
logic of all the necessary tasks for CAD and FEM logic, an en-
gineer will need to describe all the necessary modelling and
boundary conditions in form of the source code at a high level
of abstraction.

The proposed approach shows how to make a computer
program, but for rapid prototyping we need the ability of visual
results presentation at various stages across model construction
and testing stages. In other words, user must be able to see the
changes at any step of the code, enter the previously saved posi-
tion or edit a set of options and then rerun the program from a
given point. Such opportunity is provided by interactive shell
programming languages. Maple and SageMath are good exam-
ples of such platforms.

However, programmers need building blocks of programs -
libraries for CAD and FEM operations. Some of them may re-
quire specific and different physical infrastructures to achieve
maximum performance. A range from coprocessors and many-
core systems to clusters of interconnected nodes. Technological

stack plays its role as compatibility of CUDA, MPI, OpenMP
programming interfaces may vary [2, 3]. At the same time, it is
important for the end user convenience, for the library to be in-
tegrated into a visual shell environment to enable fast interac-
tive experience.

3. Presented implementation

We have developed a prototype implementation of the proposed
concept, here are its main components:

 Python was chosen as a main system programming
language – for system developers and end users;

 Jupyter framework was used as an interactive shell
that delivers a single visual experience for all the user
needs;

 pythonOCC library provided a set of CAD tools and a
three-dimensional models viewer in a form
consumable by a web browser;

 FeniCS library is used as an implementation of FEM
algorithms. It supports direct integration with Jupyter
visual environment;

 Utilities GMSH and VTK were used at intermediate
stages for the conversion of model formats and
visualization;

 Tuned system was containerized for isolation and fast
deployment.

Selected libraries allow us to use possibilities GPU co-
processors via OpenCL or CUDA, while MPI allows us to
distribute computation across cluster nodes.
Platform for is deployed on a dynamically expanding cloud
cluster in a containerized form. Service is provided in the form
of a web-service, accessible from any web browser. End user
code execution is occurring on demand, it allows a flexible
dynamic scaling of our virtual cluster [4, 5]. For multiple users
to access our platform system we use JupyterHub.

CMM-2017 – 22nd Computer Methods in Mechanics September 13th – 16th 2017, Lublin, Poland

4. Conclusion

We present a prototype of a system that demonstrates some
aspects of an engineer's work if it would be entirely focused on
coding inside of an interactive shell in a web browser with
support for visualization of three-dimensional models with
rendering on both the client and server side; all stages of
prototyping are done using only a single application running on
a dynamically allocated resource of a cloud cluster.

5. Acknowledgment

This work was supported by the Russian Foundation for
Basic Research (project N 16-07-01113).

References

[1] Iakushkin, O., Kondratiuk A., Sedova O., Grishkin V.,
Jupyter extension for creating CAD designs and their
subsequent analysis by the finite element method,
International Conference on Computational Science and Its
Applications, Vol. 1787, pp. 530-534, 2016.

[2] Iakushkin, O., Shichkina Y., Sedova O., Petri Nets for
Modelling of Message Passing Middleware in Cloud
Computing Environments, International Conference on
Computational Science and Its Applications, Vol. 9787, pp.
390-402, 2016.

[3] Iakushkin, O., Grishkin V., Messaging middleware for
cloud applications: Extending brokerless approach,
International Conference on Computational Science and Its
Applications, Vol. 9787, pp. 1-4, 2014.

[4] Fatkina, A., Tikhonov N., Iajushkin O., Application of
GPGPUs and Multicore CPUs in Optimization of Some of
the MpdRoot Codes, 25th Russian Particle Accelerator
Conf.(RuPAC'16), WEPSB025, pp. 416-418, 2017.

[5] Iakushkin, O., Sedova O., Grishkin V., Application control
and horizontal scaling in modern cloud middleware,
International Conference on Transactions on
Computational Science XXVII, Vol. 9570, pp. 81-96, 2016.

