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Abstract

In this short paper the idea of statically perturbed kinematic boundary conditions for computational homogenisation is introduced and
explained. Instead of being periodic, the perturbation of the displacement field at the RVE boundary is taken from the constant traction
BCs solution, which have to be obtained first. This primary solution is established with the so called minimal kinematic boundary
conditions method. It is shown that this approach provides better homogenisation results, in statistical sense, than other BCs commonly
used in this context.
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1. Introduction

The results of the computational homogenisation of the ge-
ometrically irregular composites depend strongly on the quality
of the so called representative volume element (RVE). The error
rate of the estimated effective properties is then often used to de-
termine the necessary size and shape of the RVE (see e.g. [1]). It
is important to notice that one of the the main sources of discrep-
ancies between the estimated and true effective properties of the
composite are the boundary conditions (BCs) used to load the mi-
croscopic RVE with the average macroscopic quantities. In case
of unstructured media, the answer of the surrounding of the RVE
always includes an unknown random perturbation. This perturba-
tion obviously cannot be deduced from the material structure like
in case of periodic media. However, many authors [1, 2] propose
at this point to assume the so called local periodicity (not the
whole body is periodic, but the closest surrounding of the RVE
only) and to use periodic boundary conditions. It is shown that
this approach provides better homogenisation results than other
common choices for RVE boundary conditions, i.e. linear dis-
placements BCs and uniform tractions BCs.

In this paper we propose new approach for establishing
boundary conditions in computational homogenisation of ran-
dom media. Instead of being periodic, the perturbation of the
displacement field at the RVE boundary is taken from the com-
patibile uniform traction BCs solution, which have to be obtained
first. As it is shown in [3] this primary solution can be estab-
lished with the so called minimal kinematic boundary conditions
method. This approach provides better homogenisation results,
in statistical sense, than other BCs used in this context.

2. Homogenisation framework

Let’s consider a composite material for which a representa-
tive volume element Ω with the external boundary ∂Ω can be
defined. In the case of elastic constituents of the composite and
with the assumption of small strains, the local stresses in the RVE
will be given via the constitutive relation:

σij = cijklεkl, (1)

where εkl = 1
2
(uk,l + ul,k) is the microscopic strain tensor (uk

is the displacement field) and cijkl is an elastic tensor depending
on the position in RVE. Averages of the microscopic strains and
stresses over domain Ω are given by:

Eij =
1

Ω

∫
Ω

εijdΩ =
1

Ω

∮
∂Ω

(uinj + ujni)dS, (2)

Σij =
1

Ω

∫
Ω

σijdΩ =
1

Ω

∮
∂Ω

tixjdS. (3)

In the above, the Gauss theorem is used to represent the volume
averages with boundary integrals and also ni are the boundary
normals, ti are the boundary tractions and xj are boundary coor-
dinates. It is assumed, that the average values are related via the
effective macroscopic tensor Cijkl:

Σij = CijklEkl (4)

Homogenization problem considered here is formulated as fol-
lows: find solution uk of the equilibrium equations σij,j = 0
defined on Ω, subject to macroscopic strain Eij in such a way
that equation (2) is fulfilled.

3. RVE boundary conditions

Let’s assume, without loss of generality, that the displace-
ment field at the RVE can be decomposed as follows:

ui = Eijxj + ũi (5)

where Eijxj is interpreted as the mean displacement and ũi is
the perturbation part. We define also the perturbation strain as
ε̃ij = 1

2
(ũi,j + ũj,i). The total strain is then given via:

εij = Eij + ε̃ij (6)

From equations (2), (5) and (6) it is immediately deduced that the
integral of strain perturbation over the RVE must vanish, i.e.:∫

Ω

ε̃ijdΩ =

∮
∂Ω

(ũinj + ũjni)dS = 0. (7)

The boundary conditions used in homogenisation process must
then assure the condition (7) is fulfilled.
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3.1. Linear displacements BCs

Linear displacements BCs are defined by assuming ũi = 0
at the RVE boundary. This is realized by applying ui = Eijxj
at ∂Ω. Let’s denote the solution of such defined boundary value
problem, as:

uki = Eijxj + ũki , (8)

From this solution also εkij , σ
k
ij , Σ

k
ij and Ckijkl can be computed.

Because of the kinematic nature of these BCs they lead to the
overestimated components of the effective tensor Ckijkl.

3.2. Uniform tractions BCs

Uniform tractions BCs are defined by assuming ti = Σijnj
at RVE boundary. In order to generate uniform tractions which
are compatible with the given macroscopic strain tensor Eij , the
minimal kinematic BCs approach can be used [3]. In this method
the RVE is constrained directly with the averaging equation (2)
by means of the Lagrange multipliers. The solution is found by
searching of the minimum of the following potential:

Π(ui) =

∫
Ω

εijσijdΩ + λij

(
−ΩEij +

∫
Ω

εijdΩ

)
(9)

Lagrange multipliers λij are interpreted here as the average
macroscopic stresses Σij , with minus sign. Let’s denote the so-
lution of such defined boundary value problem, as:

usi = Eijxj + ũsi , (10)

from which also εsij , σ
s
ij , Σ

s
ij and Csijkl can be computed. Be-

cause of the static nature of these BCs they lead to the underesti-
mated components of the effective tensorCsijkl. Obviously in this
solution perturbation of the displacement field ũsi at boundary is
non-zero (although it vanishes in the integral sense).

3.3. Statically perturbed kinematic BCs

In the current research we propose to apply at the RVE bound-
ary ∂Ω the kinematic BCs which do include the perturbation
computed previously with uniform traction approach, namely:

uαi = Eijxj + αũsi , (11)

where α ∈ 〈0, 1〉. In case of linear elastic constituents of the
composite and under the small strain regime it can be shown,
that the solution of such defined boundary value problem can be
represented as the linear combination of the previously defined
solutions. Namely, we have at Ω:

uαi = (1− α)uki + αusi (12)

from which also εαij , σ
α
ij , Σ

α
ij and Cαijkl can be computed subse-

quently. Depending on the parameter α some intermediate effec-
tive tensors Cαijkl are obtained with this method.

4. Numerical verification

Two-dimensional, plane strain elastic body with randomly
distributed, constant radius, circular holes, and with the overall
void ratio 0.25, has been investigated numerically. Custom soft-
ware fempy was used for this purpose [4]. The elastic matrix has
been parametrized with the Young modulus E = 20000 kPa and
the Poisson ratio v=0.3. The macroscopic strain applied to the
investigated RVEs is taken as Eij = [[1, 1], [1,−1]] · [10]−4. For
each size of the RVE (the size is understood here as the exponen-
tial measure of the number of holes contained in RVE, with base
2) 50 different distributions of holes have been generated and
the effective tensors Cijkl have been computed using the linear
displacements, minimal kinematic and statically perturbed kine-
matic boundary conditions. Additionally the periodic BCs have
been used for comparison purposes.

Figure 1: Mean values of the C0000 elastic modulus obtained for
different boundary conditions.

As it is shown in the figure 1 the mean value of the elas-
tic modulus C0000 (computed from 50 homogenisation results
for each RVE size) tend to some true effective value when the
RVE size is increasing. Clearly, the statically perturbed kine-
matic boundary conditions with α = 0.5 provide best homogeni-
sation result for all RVE sizes and it is always close to the true
effective value, even if the RVE is very poor (size 0 signifies one
hole only). The similar results are obtained also for the remaining
components of the elastic tensor.

5. Conclusions

The statically perturbed kinematic boundary conditions pro-
vide better homogenisation results, in statistical sense, than any
other BCs commonly used in this context. The key ingredient
of the proposed method is the computation of the perturbation of
the boundary displacements with the minimal kinematic bound-
ary conditions investigated in detail in [3]. In case of linear elastic
problems the resulting effective parameters can be computed as
linear combinations of linear displacements and minimal kine-
matic BCs predictions. For non-linear problems the new solution
have to be independently found. The possible drawback of the
method is the necessity for solving two BVPs during homogeni-
sation process. However, this can be compensated by the smaller
required RVE size.
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