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Abstract

The paper presents numerical research of a reconstructed middle ear system using the element made of shape memory alloy.Shape
memory alloy is modelled based on hysteretic nonlinear theory. Bifurcation analysis of the system exhibits different kind of solutions
starting from regular and ending with chaotic vibrations.
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1. Introduction

Shape memory alloys (SMAs) belong to a group of structural
materials, which are used in biomedical industry to built dental
braces, stent grafts and in other engineering fields rangingfrom
aerospace engineering and robotics. They are used to built ac-
tuators, elements of jet engines and so on. SMAs are materials,
which exhibit a reversible thermo-elastic transformationbetween
martensite and austenite influenced by the stress or temperature
factor. When the alloys change their shape under the influence
of temperature the phenomenon is called as shape memory ef-
fect (SME). SMEs can be divided into two types: one- or two-
way. The one way shape memory effect retains a deformed state
after the removal of an external force, and then recovers to its
original shape upon heating. The two-way SME is similar to
one-way SME but can also preserve its shape at both high and
low temperatures. SMAs can subsist in two different phases with
three different crystalline lattice structures: twinned martensite,
detwinned martensite and austenite. In these configurations six
possible transformations can occur. The austenite structure is sta-
ble at high temperatures, and the martensite structure is stable at
lower temperatures. When SMA is heated, it begins to transform
from the martensite into the austenite phase. The twinned marten-
site is stable when material is free from stress. The conversion
from twinned to detwinned martensite follows the loading pro-
cess. When the process of loading or unloading is finished, some
residual strain remains, that is the reason of the reverse transfor-
mation from detwinned to twinned martensite, is not completed.
Further deformation causes the transformation from detwinned
martensite to austenite, then the SME can be observed . This
process appears by heating of SMA. In order to regain from the
structure of austenite to twinned martensite the SMA shouldbe
cooled to the temperature, at which the phase of martensite is sta-
ble. This process forms a hysteresis loop known as pseudoelastic
effect which can be very complicated in modelling process.

The thermo-mechanical properties of SMAs can be modelled
at different scales. In microscopic and mesoscopic approaches
[5] the material behaviour is modelled starting from the molecu-
lar and lattice levels, respectively. Other class of modelsis based

on a macroscopic approach, where only phenomenological fea-
tures of the SMAs are taken into account [7]. Most often these
models are based on an assumed phase transformation kinetics
and consider certain mathematical functions to describe the phase
transformation behaviour of the material. This approach was first
proposed by Tanaka and Nagaki [13], and it provided a stimulus
for the scientific community to present other modified transfor-
mation kinetics laws, see e.g. papers by Liang and Rogers [6]and
Brinson [1]. These models are very popular in the literature, and
play an important role in SMAs structures modelling and analysis
[7].

Another group of phenomenological models is based on De-
vonshire’s theory which postulates a free energy potentialfunc-
tion expressed as a polynomial in material strain. Initially pro-
posed for a one-dimensional stress state by Falk [2], it was later
extended for a three-dimensional context by Falk and Konopka
[3]. Afterwards, a similar model was proposed by Fremond [4]
and many others [8, 9, 10], also in a simplified form. These
free energy potential models can reproduce both the pseudoe-
lastic and shape memory effects depending on the temperature
and the stress-strain state. Therefore, the Falk’s nonlinear SMA
model is used in the present study.

The provided paper presents dynamics of a two degrees of
freedom SMA oscillator. The model of SMA spring is based on
the stiffness variation with respect to the temperature, strain and
strain velocity [14]. The 2dof system is adopted to model a re-
constructed human middle ear. The paper focuses on numerical
analysis of system dynamics under various excitation conditions.

2. Model of a reconstructed middle ear

The presented model of a reconstructed middle ear consists of
two lumped masses: the malleus (mM ) and the stapes (mS) con-
nected by a spring made of shape memory alloy (Fig.1). More-
over the masses are fixed to the base through springs (k) and
dampers (c) which represent the ligaments of middle ear (AML
andAL), the tympanic membrane (TM ) and the cochlea (C).
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Figure 1: Two degree of freedom model with SMA element

The differential equation of the system motion can be trans-
formed to the non-dimensional form:
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where,x1 andx2 are dimensionless coordinates ofxM andxS .
The coefficientα, β, δ andm are non-dimensional factors,q and
ω are the amplitude and the frequency of the external excitation.

3. Numerical results

The presented model is analysed numerically to find dynamic
responses on external excitation. The investigations are perform
in Matlab-Simulink using Runge-Kutta method. Vibrations of
the middle ear are presented in the form of bifurcation diagram
(Fig.2) where the excitation amplitude (q) is changed. One can
observe a variety of solutions starting from regular ones and end-
ing at chaotic.

Figure 2: Bifurcation diagram ofx2 vibrations

4. Conclusions

The presented nonlinear model of 2dof oscillator with SMA
spring exhibits rich dynamics which will be studied thoroughly
in the full paper. However, some interesting symptoms of chaotic

and regular vibrations are demonstrated in the tested rangeof ex-
citation amplitudes.
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