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Abstract

The critical conditions and post-critical behavior of stay-cables in case of dry galloping due to stationary wind are analyzed; cases of
different inclinations of the chord are taken into account. After evaluating the initial configuration under the effect of self-weight and
static pre-stress, the nonlinear exact equations of motion are written for elastic flexible cables, including the contributions of aeroelastic
forces. Wind effects on the yawed cylinder are considered in a quasi-steady framework and can induce dry galloping, i.e. galloping
when neither rain rivulet nor ice accretion is present on the cross-section of the cable, which is actually circular. A Galerkin projection
of the partial differential equations and the analysis of the discrete system of equations of motion, using both numerical and perturbation
techniques, allow to determine the instability threshold and the post-critical evolution of the cable.
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1. Introduction

Stay-cables are structural members typically used in impor-
tant engineering structures like bridges and towers, and where
the low weight-to-stiffness ratio is a crucial asset. In [1] the free
dynamics of low-inclined stay-cables was evaluated rotating the
reference system to the chord and using a suitable modification
of the equations valid for horizontally supported cables. In [2] a
specific model for inclined cables was introduced, and natural fre-
quencies and modal shapes were asymptotically obtained, show-
ing hybridization of the modes and loss of crossover of the fre-
quencies, phenomena not captured by adaptation of the equations
valid for horizontally supported cables. Nonlinear models have
been introduced lately to study forced dynamics. In [3] cable-
structure models as an adaptation of horizontal cables were intro-
duced to study vibrations and to design actuators, prefiguring the
use of numerical techniques in the derivation of the solution. In
[4], numerical and analytical techniques were used to study the
nonlinear free dynamics of inclined cables, discussing the effect
of the static condensation of the longitudinal displacement. In
[7, 8, 9], a consistent model of beam-like cable was introduced
to take into account the effect of the twist and bending in hori-
zontally supported cables; examples on galloping of iced cross-
sections are carried out. In [5], the combined effect of harmonic
base motion and galloping due to the presence of a rain rivulet
on the cross section of a stay-cable was considered, showing pos-
sible interaction among the different sources of excitation. In
[6], a complete nonlinear model of flexible inclined cables was
introduced and then, after evaluation of the order of magnitude
of some terms, simplifications to the model were suggested. In
the last decade (e.g., [10] the mechanism inducing dry gallop-
ing of yawed circular cylinders has been extensively analyzed by
means of wind tunnel tests. Despite unsteadiness and spatial vari-
ation of the flow can be significant during the cable motion [11],
an approximate description through a quasi-steady model seems
possible (e.g., [11, 12]). In this paper, starting from the nonlin-
ear model proposed in [6], the analysis of galloping-like insta-

bility in yawed conditions is performed for significantly inclined
long stays with different inclination of the chord. Natural fre-
quencies and normal modes are numerically obtained, taking into
account the possible significant variation along the span of both
the curvature and the pre-stress already in the static configuration,
and highlighting hybridization of both in-plane and out-of-plane
modal shapes. Then, after a Galerkin projection of the partial dif-
ferential equations on the first significant modes, the discretized
system of equations of motion is addressed by means of both nu-
merical and perturbation techniques, in order to get information
on the stability conditions where dry galloping is triggered as well
as to evaluate the post-critical dynamics.

2. Equations of motion

2.1.  The static configuration

As a first step, the static configuration of the pre-stressed stay-
cable is obtained for inextensible material. Following the guide-
lines of [5] and applying the equilibrium equations when self-
weight is considered, the static configuration is parametrically
described in terms of horizontal Z and vertical § components of
the position of the axis line of the cable at abscissa s:

Z(s) = mig [arcsin(% + c) — arcsin(c)]

2
y(s) = ﬂ[ 1+ (B2 4 o) = Vit e
mg H

where H is the horizontal component of the pre-stress, m the
mass linear density, g the gravity acceleration and c¢ a constant.
Imposing the boundary conditions Z(!) = x; and g(I) = wi,
i.e. the position of the right support, located at abscissa s = [
which is the length of the cable, one can numerically evaluate
e.g. H and c, and fully know the initial configuration by means
of Egs. (1). Then, evaluation of the rotation 1 of the tangent to
the axis line is easily obtained: tan((s)) = “2* +c, and conse-

quently the curvature of the cable is #(s) = '(s) and the cable
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pre-stress is T'(s) = where prime stands for differenti-

_H
cos(9(s))’
ation with respect to s.

2.2.  The incremental equations of motion

Once incremental load vector b (including aeroelastic
forces) and nonlinear strain of the elastic cable, namely
e(s) = /(1 +u +kv)2 + (v + ku)2 + w2 — 1 are consid-
ered, where u(s), v(s), w(s) are the components of the dynamic
displacement u(s) of the axis line along its tangent, normal and
binormal directions indicated as a1, a2, as, respectively, the vec-
tor form of the equations of motion turns out to be

(T + EAe)a,)’ — T'a; — Tkas + b = mii(s) 2)

where F A is the axial stiffness of the cable, a; is the (unknown)
tangent vector to the current configuration of the axis line (see
Figure 1a), whose expression is a; = 1—;(51 + u’) and the
dot stands for time differentiation. As a preliminary result, the
static configuration of a cable of length [ = 700 m, inclination
of the chord of 45° and mechanical parameters coherent with a
slack stay are presented in in Figure 1a. The corresponding static
pre-stress 1" and curvature % are then considered as function of
s, showing a significant variation along the span (see Fig. 1b).
The first two in-plane modes and out-of-plane modes are evalu-
ated (Fig. 2b,c), highlighting hybrid characteristics and sharing
the same shapes for v and w. Finally, results descending from
the Galerkin projection of Eq. (2) on the considered four modes,
and related to critical and post-critical analysis of the cable in
conditions of dry galloping, are discussed.
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Figure 1: Stay-cable. (a) Static position X and current position
x of the axis line, with respective tangent vectors a; and ai; (b)
static pre-stress T (in blue), and curvature & (in magenta) as func-
tion of s.
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Figure 2: Stay-cable. (a) Static configuration for the example (in
blue), with inclined chord (in orange); (b) in-plane modes: first
(blue) and second (orange); (c) out-of-plane modes: first (blue)
and second (orange).

3. Conclusions

The dynamic behavior of inclined yawed stays is analyzed us-
ing a complete model able to describe in-plane and out-of-plane
hybrid modes. The static configuration is evaluated, descend-
ing from equilibrium conditions when self-weight is applied, and
then nonlinear equations of motion considering the aeroelastic
forces under a quasi-steady framework are written. A Galerkin
procedure projecting the partial continuous system on the hybrid
modes leads to a discrete system of ordinary differential equa-
tions, able to provide critical conditions of galloping-like insta-
bility and to describe post-critical evolution of the inclined cable.
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