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Abstract 
 

The paper deals with an improved method of solving large-scale linear programming problems related to Michell trusses. As in the 
previous version (reported on CMM 2015), both bars and nodes are activated or deactivated in subsequent iterations. In the present 
version of the method, the adjoint displacements of inactive nodes, i.e. nodes in empty regions, are specifically adjusted by solving 
an auxiliary optimization problem, just to reduce the size of the optimization problem. This additional step is cheap and allows a 
more efficient cutting off the design domain, thus enabling a significant reduction of the size of the problem. Therefore, the 
numerical results can be attained for denser ground structures than before, giving better approximations of Michell structures. This is 
very important for 3D problems, because every unnecessary node can generate a large number of unnecessary potential bars. The 
preliminary results of such problems clearly indicate high efficiency of the proposed method.  

Keywords: structural topology optimization, Michell structures, adaptive ground structure method, linear programming, interior 
point and active set method 

 

1. Introduction 

The main advantage of ground structure methods consists in 
possibility of formulating the topology optimization problem in 
linear programming forms (i.e. convex and free of local 
minima), thus enabling to find the globally optimal solution. 
Nevertheless, a dense set of nodes with a large number of 
potential bars is required to obtain a good approximation of an 
exact solution, representing Michell truss. This inevitably leads 
to large-scale optimization problems which can, however, be 
solved effectively by using the adaptive ground structure 
methods (c.f. the papers by Gilbert and Tyas [1], Pritchard et al. 
[5] and Sokół [6,7]).   

In the present paper, an important improvement to adaptive 
ground structure methods is proposed. This improvement allows 
better reduction of the problem size by eliminating greater 
number of unnecessary bars. This reduction is possible thanks 
to adjusting adjoint displacement field in empty regions where 
no material is needed. This adjusting phase requires solving an 
auxiliary linear programming problem of relatively small size. 
This improvement is particularly important for 3D problems 
because the optimal spatial trusses tend to assume forms of 
lattice surfaces while most of design space becomes empty. 

2. Fundamentals of plastic layout optimization 

Due to limited space of the abstract, we discuss bellow only 
formulations for trusses (ground structures) subjected to a single 
load condition. The multi-load case problems will be discussed 
in the full-length paper (c.f. [5-7]). 

2.1. Primal and dual forms of truss topology optimization 

The primal (lower bound) form of the linear programming 
problem defining the lightest truss composed of M bars and 
working in permissible stresses in tension and compression 

(C  i  T, for i  1, 2, …, M) can be written as follows (for 
alternative formulations see [1,5-7]): 
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where V is the total volume of the structural material of the 

truss; v and v are vectors of member volumes of bars in 
tension and compression, respectively; 1 is the vector of length 
M whose all elements are equal to 1; P is the vector of nodal 
forces (of size N - the number of degrees of freedom); and the 

rectangular matrix CNM  B/L is calculated from the geometric 
matrix B and the vector of bar lengths L (by dividing every i-th 
row of B by the corresponding length Li). 

In the adaptive ground structure methods, the problem (1) is 
solved iteratively for some specifically chosen subsets of active 
bars. Thus, we replace one large-scale optimization problem by 
a series of much smaller sub-problems with only m active bars, 

where m  M is several times smaller than M. Decision of 
activating (or deactivating) new bars is performed based on the 
dual (upper bound) form, which is given by 
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Here u is the vector of Lagrange multipliers, called adjoint 
nodal displacements; and W is the work of external loads over 
these displacements.  

Note that constraints (2)2,3 correspond strictly to Michell’s 
optimality criteria. It means that optimal truss has to satisfy all 
of these constraints, i.e. for every potential bar. Moreover, if 
any constraint is violated, then by activating the corresponding 
bar (and solving the problem again) we can only decrease Wmax, 
and at the same time find better Vmin, because from duality 

principle Wmax  Vmin. It holds for feasible problems (1) and (2), 
but this is the case considered in the paper (our ground 
structures are connected properly).  
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It is worth noting also that dual variables u are calculated 
automatically and do not require additional computations if one 
uses the primal-dual version of the interior point method.  

3. The adaptive ground structure method with selective 
subsets of active bars and nodes 

At the beginning of this section, it should be reminded that 
the adjoint displacement and strain fields in empty regions are 
not defined uniquely. Consequently, one can adjust the non-
unique displacement field just for a purpose, which in our case 
is the maximal possible to attain reduction of the size of the 
optimization problem. 

In the prior version of the method developed by the author 
[7], the displacements of nodes in empty regions were assumed 
equal to the displacements from preceding iterations (see point 
8 of the algorithm in Sec. 3 of [7]), and this assumption was 
justified. Nevertheless, on the base of the performed numerical 
tests, it has been noted that many unnecessary bars are still 
activated, even if they are absent in the final optimal solution. 
Consequently, the reduction of the size of the optimization 
problem of succeeding iteration was not as significant as 
expected. The present, updated version of the method eliminates 
this drawback. Instead of utilizing the values of nodal 
displacements in empty regions from the previous iteration, it is 
worth to solve an auxiliary optimization problem to adjust 
displacement field in a better way.  

3.1. Auxiliary optimization problem to adjust nodal 
displacements in empty regions 

The aim of the present investigation is to develop a 
procedure of adjusting the displacement field in empty regions 
in such a way that the number of new activated bars in the 
subsequent iteration is as small as possible. Since activation of 
new bars corresponds to violated constraints (2)2,3, it is justified 

to minimize the average normalized strain over m inactive bars 
of first level connectivity  
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Here i denotes normalized adjoint strain of i-th inactive bar; u 

and u are vectors of displacements of active and inactive 

nodes, respectively. Note that u is known and fixed, and only 

displacements u and  play the role of design variables. 
Moreover, Ci denotes the i-th row of matrix C which is divided 

here into two parts C and C corresponding to active and 
inactive degrees of freedom.  

Alternative strategies of minimizing strains in empty 
regions will be discussed in the full-length paper. 

4. Example - Michell sphere  

Consider a well known problem of Michell sphere, that is 
the minimum weight 3D structure to support a pair of axial 
torques [2-4]. Using antisymmetric boundary conditions, the 
problem can be reduced to one eighth of the full cuboidal 
domain surrounding the sphere. The result presented in Fig. 1 
has been obtained for such a reduced problem. For the sake of 
clarity, only the upper half of the sphere without loading and 
supports is shown. The base of this visible part of the sphere is 

fully supported while the torque on the upper side is modelled 
by 24 point loads distributed circumferentially every 15 degree. 

These point loads are applied on a circle of radius r  3, located 

by h  4 above the origin; and as was expected, the optimal 

layout forms a latticed sphere of radius R  5.  
The numerical result presented in Fig. 1 was obtained using 

a ground structure of 636348 cubic cells with 16 753 176 554 
bars. The solution was found in 9 iterations with total CPU time 

less then 7 hours and final volume Vn  4.42509M/0. The 
numerical result is worse than the exact result of only 0.7% 

(Va  4.394449155M/0, see [3]). More details of the present 
example as well as other numerical solutions of 2D and 3D 
Michell problems will be discussed in the full-length paper. 
 

 

Figure 1: Numerical approximation of Michell sphere using a 
ground structure of almost 6 billion bars 
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