CMM-2017 — 22" Computer Methods in Mechanics September 13-16" 2017, Lublin, Poland

On theerror analysis of the Meshless FDM and its Multipoint extension

Irena Jawor ska
Institute for Computational Civil Engineering, Cractmiversity of Technology

ul.Warszawska 24, 31-155 Cracow, Poland
e-mail: irena@L5.pk.edu.pl

Abstract

The error analysis for the meshless methods, eslpefor the Meshless Finite Difference Method (MRDis discussed in the
paper. Both a priori and a posteriori error estioragiare considered. Experimental order of convegeonfirms the theoretically
developed a priori error bound. The higher ordeemsion of the MFDM — the Multipoint approach may used as a source of the
improved reference solution instead of the trudyaical one for the global and local error estimatiof the solution and residual

errors. Several types of a posteriori error estimsasire described. A variety of performed testdioon high quality of a posteriori

error estimation based on the multipoint MFDM.
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1. Introduction

In the field of engineering computation for thewimn of
practical engineering or physics problems, e.g.ctfna
mechanics, elasticity, structural and fluid dynasmietc. the
problem of overall accuracy of the computationaldelng is
determined by different types of errors. Among thibere are:

— the inevitable error (error arising from the inadacy of

the mathematical model to real object, phenomeron
process; error noise in the input data);

phenomena; simplification of data);
numerical modeling error (error of a solution metho

[0)

. . - . . h
mathematical modeling error (disregarding of certai

one of the oldest as well as effective meshlessimdetvhich is
still under development.

Large amount of error analysis research have been
developed and many error estimators are propos&Em [1,
2]. However, in the present paper, attention wil lid upon
the error analysis for meshless methods. The dpredats of
error estimation in the meshless methods will bertsh
reviewed at the beginning. Thenpriopri error estimation for
the MFDM which was developed by using approach dhase
the moving least squares error bound [8] will bscdssed. It
estimates the solution convergence rate by usihgroash size
and approximation orderp. Theoretically expected
convergence can be proved by calculating so-calieel
experimental order of convergenddext some types of the
posteriori error estimators based on the higher order extension

discretization, approximation, errors due 10 Seriespf the MFDM — the Multipoint method used as theerefice

truncation);
computing error (round off error; truncation error;
algorithmic error).

This paper concerns the numerical solution errer, the
difference between the exact and approximate swiutihe
exact solution usually is not known, therefore caa get only
some estimates of the error. In numerical companatthe error
estimate is used to threliable assessment of the accuramy
the computed solution and to the improvement offaatational
efficiency. In the second case the error estimagarsed as the
basis of aradaptive refinemenrocess.

Both a priori and a posteriori errors may be considered,
though the latter may be evaluated only after at&wi of the
problem is found. Instead, a priori error estimaeusually
found before the whole solution process starts gield
information on the asymptotic behavior of the disization
errors.

The Finite Element MethodFEM) has been the most
commonly applied method of computer analysis fonyngears.
However, in many cases, e.g. the mesh distortioequent
time-consuming remeshing is needed during the peoad
computation. This is the motivation of developmehineshless
methods which use only a set of nodes for disattia of the
continuum. Nodes can be easily moved, inserted dmteted,
therefore this technique leads to greater flexip#éind is more
convenient and attractive to implement adaptive@ss.

solution, are quoted in detail. Thdfestivity indexhas been
introduced to measure the quality of a posterioriore
estimators. To examine the proposed estimatorsraetests
have been solved.

2. OntheMeshlessFDM and multipoint method

Meshless FDM [3], as other meshless methods, ischas
the set of arbitrarily distributed nodes which niag locally
remodeled without any difficulties. Additionallyhé MFDM
may use various formulations of the boundary valteblems:
strong (local), weak (global), and mixed (localizd$) one.
Moreover, it includes extensions allowing for higherder
approximation, e.g. the multipoint MFDM [6], and ath
follows, it constitutes an effective tool for fuitst
approximation and error analysis.

In general, meshless approximatiafi(x) for unknown
functionu may be written as

ue)=u(P=> ®(Jy )
where u; are the nodal values (degrees of freedom, d.off.)

the unknown functioru(x) in the domainQ and ®, are the

shape (or pseudo-shape) functions, which may bergtd
using various methods of local approximation. Ie tase of
MFDM, the shape functions are obtained by the Mgvin

Many different meshless methods are proposed. Amongyeighted Least Squares (MWLS), [3, 7] approximation

other the Meshless Finite Difference Method (MFDNB] is
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2.1. MWLS approximation

The idea of the MWLS is simple. To obtain the apprate
value of unknown functionu at point P; the local or global
approach may be used. In the case of local one swnadl
selected subset of nod®s called the stencil is used (Fig.1).
Construction of the local approximation of functiois
performed by assuming appropriate d.o.f. at nodestencil,
e.g. the unknown function values. In the case efrtultipoint
MFDM - the special scheme with taking into accosame
additional d.o.f. [4] is used to obtain the higherder
approximation. The basis functions of MWLS approiion
may include the subsequent polynomials [7], or dageries
expansion [3].
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Figure 1: Selected stencils in dom&irj4]
3. Awpriorierror estimation

Evaluating the error estimates for the moving leagtares
(MLS) approximation in general case is one of shbjects of
papers [8, 9]. This results in the local a priarbe bounded by
the error of a local polynomial approximation.

In the MWLS approximation used for the MFDM the
Taylor polynomial of total degrgeis considered instead of the
subsequent polynomials as the basis function [3,Ir6]this
research a priori error bound based on the inwastig of the
MLS approximation [8] is developed for the MFDM. We
introduce an error
approximation with Taylor polynomial reproductiohdegreep
has the approximation ordéxh*%).

formula which shows that MWLS

p-, or hp- approach. The higher order multipoint method ey
successfully applied gs or hp- approach to compute improved
solution. The error estimation quality may be meaduby
means of the so-called effectivity index — the ratio of some
norm of the error estimate and the true error ndgg= 1 for
the true solution.

Residual estimatorsise either explicit residual errors or
equivalent implicit ones. Each of them provides walify
measure of the higher (multipoint approach) or loggandard
MFDM) order solution error. Using the approximatigher
order solution defined at the nodes, one may catleuthe
residuum between the nodes. Several tests donesghinat the
error distribution essentially depends on the simogt
parameter used in the MWLS approximation weightfiom

Zienkiewicz-Zhu smoothing error estimatase based on
the comparison between the recovered (rough) anceference
(smoothed, e.g. higher order multipoint) derivadiy&0].

It is worth mentioning here that in the MFDM as &g in
the multipoint approach the unknown function defixes are
obtained without any additional computational cdgte best
feature of MFD approaches is the same order of the
convergence rate for derivatives as for the caledlaolution.

5. Final remarks

The paper is focused on the error analysis in tleshiess
FDM and its higher order multipoint extension. Agpr bound
and a posteriori error estimates of the solutiod amsidual
errors were developed. Further research in thel fad the
MFDM and multipoint method error analysis is pladn
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