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Abstract 
 

The error analysis for the meshless methods, especially for the Meshless Finite Difference Method (MFDM) is discussed in the 
paper. Both a priori and a posteriori error estimations are considered. Experimental order of convergence confirms the theoretically 
developed a priori error bound. The higher order extension of the MFDM – the Multipoint approach may be used as a source of the 
improved reference solution instead of the true analytical one for the global and local error estimation of the solution and residual 
errors. Several types of a posteriori error estimators are described. A variety of performed tests confirm  high quality of a posteriori 
error estimation based on the multipoint MFDM. 
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1. Introduction 

In the field of engineering computation for the solution of 
practical engineering or physics problems, e.g. fracture 
mechanics, elasticity, structural and fluid dynamics, etc. the 
problem of overall accuracy of the computational modeling is 
determined by different types of errors. Among them there are:  

− the inevitable error (error arising from the inadequacy of 
the mathematical model to real object, phenomenon or 
process; error noise in the input data); 

− mathematical modeling error (disregarding of certain 
phenomena; simplification of data); 

− numerical modeling error (error of a solution method, 
discretization, approximation, errors due to series 
truncation); 

− computing error (round off error; truncation error; 
algorithmic error). 

This paper concerns the numerical solution error, i.e. the 
difference between the exact and approximate solution. The 
exact solution usually is not known, therefore one can get only 
some estimates of the error. In numerical computations the error 
estimate is used to the reliable assessment of the accuracy of 
the computed solution and to the improvement of computational 
efficiency. In the second case the error estimation is used as the 
basis of an adaptive refinement process. 

Both a priori and a posteriori errors may be considered, 
though the latter may be evaluated only after a solution of the 
problem is found. Instead, a priori error estimate is usually 
found before the whole solution process starts and yield 
information on the asymptotic behavior of the discretization 
errors.  

The Finite Element Method (FEM) has been the most 
commonly applied method of computer analysis for many years. 
However, in many cases, e.g. the mesh distortion, frequent 
time-consuming remeshing is needed during the process of 
computation. This is the motivation of development of meshless 
methods which use only a set of nodes for discretization of the 
continuum. Nodes can be easily moved, inserted and deleted,  
therefore this technique leads to greater flexibility and is more 
convenient and attractive to implement adaptive process. 

Many different meshless methods are proposed. Among 
other the Meshless Finite Difference Method (MFDM)  [3] is 

one of the oldest as well as effective meshless method which is 
still under development. 

 Large amount of error analysis research have been 
developed and many error estimators are proposed in FEM [1, 
2]. However, in the present paper, attention will be laid upon 
the error analysis for meshless methods. The developments of 
error estimation in the meshless methods will be shortly 
reviewed at the beginning. Then a priopri error estimation for 
the MFDM which was developed by using approach based on 
the moving least squares error bound [8] will be discussed. It 
estimates the solution convergence rate by using only mesh size 
h and approximation order p. Theoretically expected 
convergence can be proved by calculating so-called the 
experimental order of convergence. Next some types of the a 
posteriori error estimators based on the higher order extension 
of the MFDM – the Multipoint method used as the reference 
solution, are quoted in detail. The effectivity index has been 
introduced to measure the quality of a posteriori error 
estimators. To examine the proposed estimators several tests 
have been solved. 

2. On the Meshless FDM and multipoint method 

Meshless FDM [3], as other meshless methods, is based on 
the set of arbitrarily distributed nodes which may be locally 
remodeled without any difficulties. Additionally, the MFDM 
may use various formulations of the boundary value problems: 
strong (local), weak (global), and mixed (local-global) one. 
Moreover, it includes extensions allowing for higher order 
approximation, e.g. the multipoint MFDM [6], and what 
follows, it constitutes an effective tool for function 
approximation and error analysis. 

In general, meshless approximation uh(x) for unknown 
function u may be written as  
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where  ui  are the nodal values (degrees of freedom, d.o.f.) of 
the unknown function u(x) in the domain Ω and iΦ  are the 

shape (or pseudo-shape) functions, which may be generated 
using various methods of local approximation. In the case of 
MFDM, the shape functions are obtained by the Moving 
Weighted Least Squares (MWLS), [3, 7] approximation. 
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2.1. MWLS approximation 

The idea of the MWLS is simple. To obtain the approximate 
value of unknown function  u  at point  Pi the local or global 
approach may be used. In the case of local one some small 
selected subset of nodes Pj  called the stencil is used (Fig.1). 
Construction of the local approximation of function is 
performed by assuming appropriate d.o.f. at nodes of stencil, 
e.g. the unknown function values. In the case of the multipoint 
MFDM – the special scheme with taking into account some 
additional d.o.f. [4] is used to obtain the higher order 
approximation. The basis functions of MWLS approximation 
may include the subsequent polynomials [7], or Taylor series 
expansion [3].  

 
Figure 1: Selected stencils in domain Ω [4] 

3. A priori error estimation 

Evaluating the error estimates for the moving least squares 
(MLS) approximation  in general case is one of the subjects of 
papers [8, 9]. This results in the local a priori error bounded by 
the error of a local polynomial approximation. 

In the MWLS approximation used for the MFDM the 
Taylor polynomial of total degree p is considered instead of  the 
subsequent polynomials as the basis function [3, 6]. In this 
research a priori error bound based on the investigation of the 
MLS approximation [8] is developed for the MFDM. We 
introduce an error formula which shows that MWLS 
approximation with Taylor polynomial reproduction of degree p 
has the approximation order O(hp+1). 

The resulting a priori bound may be confirmed by 
calculating the experimental order of convergence for the error, 
for instance, for two different meshsizes h1 and h2 as follows [4] 
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Its value is equal to  k, if  error ≤ Chk  with some constant C > 0.  
A priori error estimate might be very effective, if it is 

applied to regular meshes and to simple linear differential 
operators. The convergence rate obtained by experimental order 
of convergence confirmed a priori error bound (Table 1.)  

 

Table 1: A priori error bound O(hp+1) examined by Oe(h) 
Taylor pol. order p Oe, sin(x+y) test Oe, x

4+y4+xy test p+1 
2 3,106 3,065 3 
3 3,840 4 4 
4 4,725 0, exact solution 5 

4. A posteriori error estimation based on the multipoint 
MFDM 

The multipoint approach provides higher accuracy solution 
that may be used as a reference solution in the local or global 
error estimation [5]. It may be applied for two purposes: to 
examine the accuracy of the computed solution and to generate 
series of adaptive meshes. 

Several types of error estimators are considered: 
Hierarchic estimators are based on the comparison of 

numerical results with the reference solution obtained with h-, 

p-, or hp- approach. The higher order multipoint method may be 
successfully applied as p- or hp- approach to compute improved 
solution. The error estimation quality may be measured by 
means of the so-called effectivity index Ieff – the ratio of some 
norm of the error estimate and the true error norm. Ieff = 1 for 
the true solution. 

Residual estimators use either explicit residual errors or 
equivalent implicit ones. Each of them provides a quality 
measure of the higher (multipoint approach) or lower (standard 
MFDM) order solution error. Using the approximate higher 
order solution defined at the nodes, one may calculate the 
residuum between the nodes. Several tests done showed that the 
error distribution essentially depends on the smoothing 
parameter used in the MWLS approximation weight function 

Zienkiewicz-Zhu smoothing error estimators are based on 
the comparison between the recovered (rough) and the reference 
(smoothed, e.g. higher order multipoint) derivatives [10].  

It is worth mentioning here that in the MFDM as well as in 
the multipoint approach the unknown function derivatives are 
obtained without any additional computational cost. The best 
feature of MFD approaches is the same order of the 
convergence rate for derivatives as for the calculated solution. 

5. Final remarks 

The paper is focused on the error analysis in the Meshless 
FDM and its higher order multipoint extension. A priori bound 
and a posteriori error estimates of the solution and residual 
errors were developed. Further research in the field of the 
MFDM and  multipoint method error analysis is planned. 
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