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Abstract

The paper is concerned with the analysis and the numerical solution of the multimaterial topology optimization problems for bodies
in unilateral contact. The contact phenomenon with Tresca friction is governed by the elliptic variational inequality. The structural
optimization problem consists in finding such topology of the domain occupied by the body that the normal contact stress along the
boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrainedGinzburg-
Landau energy functional. The first order necessary optimality condition is formulated. The optimal topology is obtained as the steady
state of the phase transition governed by the generalized Allen-Cahn equation. The optimization problem is solved numerically using
the operator splitting approach combined with the projection gradient method. Numerical examples are provided and discussed.
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1. Introduction

Multimaterial topology optimization aims to find the optimal
distribution of several elastic materials in a given designdomain
to minimize a criterion describing the mechanical or the thermal
properties of the structure or its cost under constraints imposed on
the volume or the mass of the structure [1]. In recent years multi-
ple phases topology optimization problems have become subject
of the growing interest [1, 4]. In contrast to single material design
the use of multiple number of materials extends the design space
and may lead to better design solutions. The paper is concerned
with the structural topology optimization of systems governed by
the variational inequalities. The class of such systems includes
among others unilateral contact phenomenon [3] between thesur-
faces of the elastic bodies. This optimization problem consists in
finding such topology of the domain occupied by the body that
the normal contact stress along the boundary of the body is min-
imized. In literature [3] ,r4this problem usually is considered as
two-phase material optimization problem with voids treated as
one of the materials. In the paper the domain occupied by the
body is assumed to consist from several elastic materials rather
than two materials. Material fraction function is a variable sub-
ject to optimization. A necessary optimality condition forthe
topology optimization problem is formulated. The cost functional
derivative is also used to formulate a gradient flow equationfor
this functional in the form of the generalized Allen–Cahn equa-
tion governing the evolution of the material phases. Two step op-
erator splitting approach is used to solve this gradient flowequa-
tion. The optimal topology is obtained as a steady state solution
to this equation. Finite difference and finite element methods are
used as the approximation methods. Numerical examples are re-
ported and discussed.

2. Problem Formulation

Consider deformations of an elastic body occupying two–
dimensional bounded domainΩ with the smooth boundaryΓ (see
Fig. 1). The body is subject to body forcesf(x) = (f1(x),
f2(x)), x ∈ Ω. Moreover, the surface tractionsp(x) =
(p1(x), p2(x)), x ∈ Γ, are applied to a portionΓ1 of the bound-

aryΓ. The body is clamped along the portionΓ0 of the bound-
ary Γ and the contact conditions are prescribed on the portion
Γ2. PartsΓ0, Γ1, Γ2 of the boundaryΓ satisfy: Γi ∩ Γj = ∅,
i 6= j, i, j = 0, 1, 2,Γ = Γ̄0∪Γ̄1∪Γ̄2. The domainΩ is assumed
to be occupied bys ≥ 2 distinct isotropic elastic materials. Each
material is characterized by Young modulus. The voids are con-
sidered as one of the phases, i.e., as a weak material characterized
by low value of Young modulus [2, 4]. The materials distribution
is described by a phase field vectorρ = {ρm}sm=1 where the
local fraction fieldρm = ρm(x) : Ω → R, m = 1, ..., s, cor-
responds to the contributing phase. In order to ensure that the
phase field vector describes the fractions the following pointwise
bound constraints called in material science the Gibbs simplex
are imposed on everyρm for m = 1, 2, ..., s,

αm ≤ ρm ≤ βm, and
s∑

m=1

ρm = 1, (1)

where the constants0 ≤ αm ≤ βm ≤ 1 are given and
the summation operator is understood component wise. More-
over the total spatial amount of material fractions satisfies for
m = 1, 2, ..., s∫
Ω

ρm(x)dx = wm | Ω |, 0 ≤ wm ≤ 1,
s∑

m=1

wm = 1. (2)

The parameterswm are user defined and| Ω | denotes the
volume of the domainΩ. From the equality (1) it results that
ρs = 1 −

∑s−1
m=1 ρm and the fractionρs may be removed from

the set of the design functions. Therefore from now on the un-
known phase field vectorρ is redefined asρ = {ρm}s−1

m=1. Due
to the simplicity and robustness the SIMP material interpola-
tion model [4] is used. Following this model the elastic tensor
A(ρ) = {aijkl(ρ)}

2
i,j,k,l=1 =

∑s

m=1 g(ρm)Am of the mate-
rial body is assumed to be a function depending on the fraction
functionρ:

A(ρ) =
s−1∑
m=1

g(ρm)Am + g(1−
s−1∑
m=1

ρm)As, (3)

with g(ρm) = ρ3m. The constant stiffness tensorAm =
{ãmijkl}

2
i,j,k,l=1 characterizes them-th elastic material of the
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body. Denote byu = (u1, u2), u = u(x), x ∈ Ω, the displace-
ment of the body and byσ(x) = {σij(u(x))}, i, j = 1, 2, the
stress field in the body. Consider elastic bodies obeying Hooke’s
law, i.e., forx ∈ Ω andi, j, k, l = 1, 2,

σij(u(x)) = aijkl(ρ)ekl(u(x)), (4)

whereekl(u(x))
def
= 1

2
(uk,l(x)+ul,k(x)) anduk,l(x) =

∂uk(x)
∂xl

. We use here and throughout the paper the summation conven-
tion over repeated indices [1, 2]. The stress fieldσ satisfies the
system of equations in the domainΩ for i, j = 1, 2 [3]

−σij(x),j = fi(x) σij(x),j =
∂σij(x)

∂xj

, (5)

The following boundary conditions are imposed:ui(x) = 0 on
Γ0, σij(x)nj = pi onΓ1, i, j = 1, 2 as well as nonpenetration
and Tresca friction conditions onΓ2:

(uN + v) ≤ 0, σN ≤ 0, (uN + v)σN = 0 onΓ2, (6)

| σT |≤ 1, uTσT+ | uT |= 0 onΓ2. (7)

Heren = (n1, n2) is the unit outward versor to the boundaryΓ.
The normal components of the displacement and stress fields are
denoted byuN andσN , respectively. The tangential components
of displacementu and stressσ are denoted by(uT )i and(σT )i,
i, j = 1, 2, respectively.| uT | denotes the Euclidean norm inR2

of the tangent vectoruT . A gap between the bodies is described
by a given functionv.

2.1. Phase field based topology optimization problem

The structural optimization problem for the contact problem
(5)-(7) takes the form:find ρ⋆ ∈ U

ρ
ad such that

J(ρ⋆, u⋆) = min
ρ∈U

ρ
ad

J(ρ, u(ρ)), (8)

whereu⋆ = u(ρ⋆) denotes a solution to the state system (5)-(7)
depending onρ⋆ ∈ L∞(Ω;Rs−1) ∩ H1(Ω;Rs−1). The cost
functional is sum of the normal contact stressJη : H1(Ω) → R
functional and regularization functionalE(ρ) : Uρ

ad → R:

J(ρ, u(ρ)) = Jη(u(ρ)) +E(ρ), (9)

FunctionalJη(u(ρ)) =
∫
Γ2

σN (u(ρ))ηN(x)ds depends on on

a given auxiliary bounded functionη(x) ∈ Mst = {η =
(η1, η2) ∈ H1(Ω;R2) : ηi ≤ 0 onΩ, i = 1, 2, ‖
η ‖H1(Ω;R2) ≤ 1}. FunctionalE(ρ) =

∑s−1
m=1

∫
Ω
ψ(ρm)dΩ

with ψ(ρm) = γǫ

2
| ∇ρm |2 + γ

ǫ
ψB(ρm) whereǫ, γ > 0 are

real constants density and functionψB(ρm) = ρ2m(1 − ρm)2.
Moreover∇ρm · n = 0 on Γ for eachm. The setUρ

ad of ad-
missible fractions has the form:Uρ

ad = {ρ ∈ L∞(Ω;Rs−1) ∩

H1(Ω;Rs−1) : 1 − βs ≤
∑s−1

m=1 ρm ≤ 1 − αs, αm ≤ ρm ≤
βm,

∫
Ω
ρmdx = wm | Ω | for m = 1, ..., s− 1} 6= ∅.

2.2. Necessary optimality condition

The Lagrange multipliers method has been used to calculate
the directional derivative of the cost functional (9) with respect to
the functionρ and to formulate necessary optimality condition to
problem(8). Taking into account that the structural optimization
problem (8) can be considered as a phase transition setting prob-
lem the constrained gradient flow equation of Allen-Cahn forthe
cost functional (9) type is formulated and numerically solved.

3. Numerical method

Operator splitting approach [4] has been used to solve Allen-
Cahn equation numerically. First the trial value of the optimal
solution is calculated for the unconstrained gradient flow equa-
tion for these parts of the cost functional which are defined either

in domainΩ or on boundaryΓ2. Next this solution is updated
by solving the gradient flow equation for curvature term of cost
functional (9) only and enforcing the constraints by the projection
operation.

4. Numerical results

The topology optimization problem (8) has been discretized
and solved numerically. Time derivatives are approximatedby
the forward finite difference. Piecewise constant and piecewise
linear finite element method is used as discretization method in
space variables. The derivative of the double well potential is lin-
earized with respect toρm. Primal-dual active set method has
been used to solve the state system. Fig. 1 presents the opti-
mal topology domain obtained by solving structural optimization
problem (8) using the formulated gradient flow Allen-Cahn equa-
tion. The areas with the weak phases appear in the central part of
the body and near the fixed edges. The areas with the strong
phases appear close to the contact zone and along the edges. The
rest of the domain is covered with the intermediate phase. The
obtained normal contact stress for the optimal topology is almost
constant along the contact boundary and has been significantly
reduced comparing to the initial one.

Figure 1: Optimal material distribution in domainΩ⋆.
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