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Abstract

The paper is concerned with the analysis and the numeritaticgo of the multimaterial topology optimization problsrfor bodies
in unilateral contact. The contact phenomenon with Tresctidn is governed by the elliptic variational inequalityhe structural
optimization problem consists in finding such topology af ttomain occupied by the body that the normal contact stltesg the
boundary of the body is minimized. The original cost fune#bis regularized using the multiphase volume constratBedburg-
Landau energy functional. The first order necessary opiiynadndition is formulated. The optimal topology is obtaéhas the steady
state of the phase transition governed by the generalizkethAlahn equation. The optimization problem is solved mically using
the operator splitting approach combined with the projectiradient method. Numerical examples are provided amiiséed.
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1. Introduction aryT". The body is clamped along the portidly of the bound-
ary I" and the contact conditions are prescribed on the portion

Multimaterial topology optimization aims to find the optima 2. Partsl'o, I's, T'; of the boundanyl” satisfy: I'; N I'; = 0,
distribution of several elastic materials in a given desigmain @ # J, %,J = 0,1,2,I' = I’ UI'; Ul'. The domairf2 is assumed
to minimize a criterion describing the mechanical or thertrat ~ t0 be occupied by > 2 distinct isotropic elastic materials. Each
properties of the structure or its cost under constraingoied on ~ Material is characterized by Young modulus. The voids are co
the volume or the mass of the structure [1]. In recent yeaiti-mu Sidered as one of the phases, i.e., as a weak material ctrazadt
ple phases topology optimization problems have becomesubj Py low value of Young modulus [2, 4]. The materials distribat
of the growing interest [1, 4]. In contrast to single matedizsign ~ IS described by a phase field vecior= {pm}7,—, where the
the use of multiple number of materials extends the designesp local fraction fieldp,, = pm(z) : @ = R, m = 1,..., s, cor-
and may lead to better design solutions. The paper is coadern fesponds to the contributing phase. In order to ensure ligat t
with the structural topology optimization of systems gmest by ~ Phase field vector describes the fractions the followingivase
the variational inequalities. The class of such systemisidtes bou_nd constraints called in material science the Gibbs Isixnp
among others unilateral contact phenomenon [3] betweesuthe ~ are imposed on eveny,, form =1,2,...; s,

faces of the elastic bodies. This optimization problem =tasn s
finding such topology of the domain occupied by the body thatw,, < pm < fm, and > pm =1, (1)
the normal contact stress along the boundary of the bodyris mi m=1

imized. In literature [3] ,rathis problem usually is considd as  \yhere the constants < am < Bm < 1 are given and
two-phase material optimization problem with voids tréa#s  he symmation operator is understood component wise. More-

one of the materials. In the paper the domain occupied by thgyer the total spatial amount of material fractions satisfier
body is assumed to consist from several elastic materigiera ,,, — | 9 ¢

than two materials. Material fraction function is a vareslb- T
ject to optimization. A necessary optimality condition five
topology optimization problem is formulated. The cost fiimeal
derivative is also used to formulate a gradient flow equation
this functional in the form of the generalized Allen—-Cahmiaq The parametersv,, are user defined and Q | denotes the
tion governing the evolution of the material phases. Twp sig~ volume of the domairf2. From the equality (1) it results that
erator splitting approach is used to solve this gradient #qwa- ps = 1 — an;ll pm and the fractiorp, may be removed from
tion. The optimal topology is obtained as a steady statetisolu the set of the design functions. Therefore from now on the un-
to this equation. Finite difference and finite element mdthare  known phase field vectgs is redefined ap = {p..}:,},. Due

m=1"

used as the approximation methods. Numerical example®are rto the simplicity and robustness the SIMP material inteapol

pm(z)dr = Wy | 2], 0 < wp, <1, Z wm=1.  (2)
Q

m=1

ported and discussed. tion model [4] is used. Following this model the elastic @ms
A(p) = {aiu(p)} jri=1 = Yoy 9(pm)Am of the mate-
2. Problem Formulation rial body is assumed to be a function depending on the fractio
function p:
Consider deformations of an elastic body occupying two— s—1 s—1
dimensional bounded domaihwith the smooth bounday (see  A(p) = Z g(pm)Am +g(1 — Z pm)As, (3)
Fig. 1). The body is subject to body forcg$z) = (fi(x), m=1 m=1

f2(z)), z € Q. Moreover, the surface tractiongz) =

. - with ) = p>,. The constant stiffness tensof,, =
(p1(z),p2(x)), z € T, are applied to a portioR, of the bound- 9(pm) Y

{@i}x1}i j.k1=1 Characterizes then-th elastic material of the



CMM-2017 — 224 Computer Methods in Mechanics

September 18-16" 2017, Lublin, Poland

body. Denote byt = (u1,u2), u = u(x), x € Q, the displace-
ment of the body and by (z) = {o;(u(x))}, i, = 1,2, the

stress field in the body. Consider elastic bodies obeyingkelso
law, i.e., forz € Q andi, j,k,1 = 1,2,

4)

whereeg;(u(z)) = 5 (ur,i(z)+ure(x)) andug i (z) = 81:9’“—1(;0)

. We use here and throughout the paper the summation conve
tion over repeated indices [1, 2]. The stress fieldatisfies the
system of equations in the domdinfor 7, j = 1,2 [3]

o 80’1']' (:L')
] T am]
The following boundary conditions are imposed;(z) = 0 on
Do, 0ij(x)n; = p;onTy, ¢,5 = 1,2 as well as nonpenetration
and Tresca friction conditions dry:

(UN+U)SO, on <0, (uN+U)UN:O OHFQ, (6)

|UT|S 1, U,TO'T+|U,T |:0 onls. )

Heren = (n1,n2) is the unit outward versor to the bounddry

oij(u(x)) = aijri(p)ern(u(z)),

1

€

—0ij(x),; = fi(z) o4j(z) (5)

)

in domain<2 or on boundanf’;. Next this solution is updated
by solving the gradient flow equation for curvature term aftco
functional (9) only and enforcing the constraints by thggxtion
operation.

4. Numerical results

n- The topology optimization problem (8) has been discretized
and solved numerically. Time derivatives are approximatgd

the forward finite difference. Piecewise constant and piesz
linear finite element method is used as discretization ntetho
space variables. The derivative of the double well potéistian-
earized with respect tp,,. Primal-dual active set method has
been used to solve the state system. Fig. 1 presents the opti-
mal topology domain obtained by solving structural optigian
problem (8) using the formulated gradient flow Allen-Cahnaq
tion. The areas with the weak phases appear in the centtafpar
the body and near the fixed edges. The areas with the strong
phases appear close to the contact zone and along the etiges. T
rest of the domain is covered with the intermediate phase Th
obtained normal contact stress for the optimal topologynimat

The normal components of the displacement and stress fiedds aconstant along the contact boundary and has been significant

denoted byux ando, respectively. The tangential components
of displacement, and stress are denoted byur); and(or)s,

i,j = 1,2, respectively] ur | denotes the Euclidean normi?

of the tangent vectorr. A gap between the bodies is described
by a given functiorv.

2.1. Phase field based topology optimization problem

The structural optimization problem for the contact prable
(5)-(7) takes the formfind p* € U?, such that

J(p*,u") = min J(p,u(p)),
peU

ad

®)

whereu* = u(p*) denotes a solution to the state system (5)-(7)
depending orp* € L°(; R N H'(; R°*™1). The cost
functional is sum of the normal contact streks: H(Q) — R
functional and regularization functional(p) : U?, — R:

J(p,u(p)) = Jn(u(p)) + E(p), )
Functional J,, (u(p)) = fF2 on(u(p))nn(z)ds depends on on
a given auxiliary bounded function(z) € M* = {n =
(m,m2) € H(Q;R*) : mp < 0 onQ, i = 1,2, I
1 llmi@irzy < 1} FunctionalE(p) = 30072 [, ¥(pm)dQ
With ¢ (pm) = % | Vpm | +2¢5(pm) Wheree,y > 0 are
real constants density and functigis (p..) = p2.(1 — pm)>.
MoreoverVp,, - n = 0 onT for eachm. The setU?, of ad-
missible fractions has the fornt7?, = {p € L= (; R*~') N
HY QG RTY) 01— B < 300 pm < 1= as,am < pm <
B, fQ pmdr =wn | Q| for m=1,...,s — 1} #0.

2.2.

Necessary optimality condition

The Lagrange multipliers method has been used to calculate

the directional derivative of the cost functional (9) widspect to
the functionp and to formulate necessary optimality condition to
problem(8). Taking into account that the structural opiion
problem (8) can be considered as a phase transition settibg p
lem the constrained gradient flow equation of Allen-Cahrtlier
cost functional (9) type is formulated and numerically solv

3. Numerical method

Operator splitting approach [4] has been used to solve Allen
Cahn equation numerically. First the trial value of the myati
solution is calculated for the unconstrained gradient flowee
tion for these parts of the cost functional which are defirittee

reduced comparing to the initial one.
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Figure 1: Optimal material distribution in domagr.
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