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Abstract

Solution methods for fluid-structure interaction (FSI) problems are considered. For time integration, a semi-implicit scheme is used
allowing to decouple momentum and geometry. Momentum balance, formulated as a velocity-based saddle-point problem, is solved
using a monolithic approach. Finite-element discretization of the system is applied, and a new nonuniform stabilization is proposed.
Robust block preconditioners based on uniform well-posedness are discussed and verified through numerical experiments. Convergence
of the presented method is verified numerically on Turek’s benchmark.
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1. Introduction

When an elastic body immersed in a fluid is flexible enough,
interaction between the flow and the structure has a crucial influ-
ence on the physics of the phenomenon. It is then not possible
to neglect the influence of (not known a’priori) variable domain
geometry or to solve decoupled equations describing the flow and
the deformation of the structure.

Two general approaches are used for simulating FSI prob-
lems: partitioned schemes, where the solid and fluid equations are
solved separately, and monolithic schemes, where the complete
set of coupled equations is solved simultaneously. A partitioned
approach requires a coupling algorithm to enforce coupling con-
ditions but allows reusing existing codes. A monolithic approach
needs a specialized code, but it is more favorable for its stability.

In this work, the monolithic approach proposed in [1] is fur-
ther developed. A semi-implicit algorithm is used for time inte-
gration: momentum equation is solved implicitly, while geom-
etry changes are treated explicitly (geometry-convective explicit
scheme). The resulting scheme exhibits good temporal stability,
allowing time steps of the order of 0.01 s at Re = 200 for Turek’s
benchmark [2]. Moreover, the problem solved at each time step
is linear. We propose optimal block preconditioners [3, 4] for the
related iterative solver.

2. Derivation of the fluid-structure interaction model

The FSI equation is reformulated to a Stokes-like problem
with variable viscosity. In [1], interaction of the fluid with a linear
elastic solid have been analysed. This approach is here extended
for an incompressible hyperelastic solid.

The FSI model is derived starting from Cauchy momentum
balance for the fluid (subscript f ) and the solid (subscript s)
within the domain Ω = Ωf ∪ Ωs:

ρf
Dvf
Dt
−∇ · σf = gf in Ωf ,

ρs
Dvs
Dt
−∇ · σs = gs in Ωs,

(1)

where D
Dt

denotes the material derivative. Coupling between the
solid and the fluid is expressed through interface conditions:

vf = vs, σf · nf = σs · ns. (2)

One can observe that the no-slip condition (2)1 is equivalent to
continuity of velocity. This can be used to define a unified veloc-
ity field,

v(x) =

{
vs(x) x ∈ Ωs,

vf (x) x ∈ Ωf .
(3)

By rearranging the local momentum balance (1) in a weak form,
the second interface condition (2)2 can be eliminated, and the
momentum balance is then reformulated as follows:∫
Ω

ρ
Dv

Dt
φdx+

∫
Ω

σ : ∇φdx =

∫
Ω

gφdx+

∫
ΓN

(n · σ)φds. (4)

By introducing the arbitrary Eulerian-Lagrangian (ALE) descrip-
tion, the material derivative is expanded as:
Dv

Dt
=

dv

dt
+ (v − vA)∇v, (5)

where vA is the mesh velocity, and the derivative dv
dt

is evaluated
holding the mesh point fixed.

For completeness, fluid and solid models are needed. Here,
we consider an incompressible Newtonian fluid,

σf = 2µf ε(vf )− pfI, ∇ · vf = 0, (6)

where p is the pressure, and µf is the viscosity. The solid is mod-
elled as an incompressible neo-Hookean material,

σ̂s = µsF̂ F̂
T − p̂sI, ∇ · vs = 0, (7)

where F̂ := ∇̂Φs = I+∇̂ûs is the deformation gradient, p̂ is the
pressure, and µs is the shear modulus. Quantities with a super-
imposed hat refer to fields defined in the reference configuration.
This results in the following weak form:
a(v, φ) + b(φ, p) = g(φ) ∀φ ∈ H1

D0(Ω),

b(v, q) = 0 ∀q ∈ L2(Ω),

∂tûs = v̂,

(8)
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where

a(v, φ) = (ρ
Dv

Dt
, φ)Ω + (2µf ε(vf ) : ε(φf ))Ωf

+ (µsF̂ ,∇φ̂s)Ωs ,

b(v, q) = (∇ · v, q)Ω.

(9)

A semi-implicit time discretization is next introduced. The
geometry is computed explicitly while the momentum balance is
solved implicitly. The material derivative Dv

Dt
is discretized us-

ing a semi-implicit formula for obtaining a linear equation to be
solved at each time step.

Well-posedness of the problem solved at an individual time
step is analysed for specially chosen norms by verification of the
inf–sup conditions. Details are omitted here.

2.1. Time integration algorithm

The solution procedure proceeds incrementally, and at each
time step the following three steps are preformed:

• Explicit part: New geometry is computed explicitly using
the data from the previous time step.

• Implicit part: Using the new geometry, the momentum
balance, (8)1–(8)2 is solved implicitly, and new values of
velocity and pressure are thus obtained.

• Postprocess the solution: The new displacement is com-
puted using the displacement from the previous time step
and the velocity obtained in the current time step.

2.2. Finite-element model

Finite-element discretization yields a fully-discrete problem.
However, the discretized equations require stabilization to remain
well-posed independently of problem parameters. The grad-div
stabilization is introduced as follows:{
ã(v, φ) + b(φ, p) = f(φ),

b(v, q) = 0,
(10)

where

ã(v, φ) = a(v, φ) + (r∇ · v,∇ · φ)Ω. (11)

Two versions of stabilization are considered: constant r, as
used in [1], and variable r, as proposed in this work. Numeri-
cal experiments shows that variable stabilization tailored to local
material parameters improves the quality of the solution.

3. Results

The tests are performed on Turek’s benchmark [2]. The geo-
metrical setting with a coarse mesh is shown in Fig. 1.

Figure 1: Coarse mesh for Turek’s benchmark problem

The results obtained using different stabilization methods are
shown in Fig. 2.

Figure 2: Comparison of stabilization methods for Turek’s bench-
mark problem: no stabilization (top), constant stabilization pro-
posed by Xu[1] (middle) and variable stabilization (bottom)

For solving the system of linear equations, the preconditioned
Krylov method has been used. Diagonal and upper-triangular
preconditioners have been tested for both uniformly and nonuni-
formly stabilized formulation.

4. Conclusion

The proposed time integration algorithm consists of a few
simple steps that are easy to implement. Stabilization and so-
lution methods for the implicit part of the algorithm have been
developed and implemented. Nonuniform stabilization results
in smoother results and allows to avoid numerical artifacts ap-
pearing at mesh irregularities. Numerical experiments illustrate
the robustness of the applied solution methods. The number of
Krylov iterations required for both stabilization methods are com-
parable.
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