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Abstract

This paper deals with the numerical investigation of ellipticity of the boundary value problem for finite strain elasto-plasticity which
can be lost when softening occurs. A discontinuity surface appears then in the material and, from the theoretical point of view, this
leads to ill-posedness of the boundary value problem. In the paper the analysis for the isothermal conditions is first carried out. The
ellipticity condition is tested using the acoustic tensor which can be computed in several ways depending on the stress and strain
measures considered. Next, the thermomechanical coupling is approached which requires the formulation of additional conditions
related to the thermal field. The verification of ellipticity is performed numerically during Finite Element Method computations.
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1. Introduction

When a material experiences a load which grows to extreme
values it initially deforms uniformly and from some point of
the process strains increase only in a certain zone (band) while
the rest of the sample experiences unloading. This phenomenon
called strain localization is related to the occurrence of a discon-
tinuous bifurcation. It means that in the material a jump of the
velocity gradient across a certain surface can appear. The classi-
cal local continuum theory fails to describe the problem correctly,
since in this situation the boundary value problem is ill-posed and
the elliptic equations become hyperbolic [1].

The aim of this paper is to investigate the ellipticity of the
governing equations for an elasto-plastic material in isothermal
and non-isothermal conditions, undergoing strain localization
caused by different types of softening: material, thermal and ge-
ometrical. The analysis is performed at the chosen Gauss points
after convergent load steps during Finite Element Method (FEM)
calculation.

2. Ellipticity for large strain isothermal models

In the reference configuration the traction equilibrium for the
stationary discontinuity surface Σ is defined using the rate of the
first Piola-Kirchhoff stress tensor P [2]

⟦Ṗ⟧N = 0 (1)

where ⟦⋅⟧ denotes the jump of a quantity. Vector N is normal to
the discontinuity surface in the reference configuration, see Fig-
ure 1.

The following non-zero jump of the velocity gradient across
the discontinuity surface is admitted

⟦l ⟧ = g ⊗ n ≠ 0 (2)

where n is a vector normal to the discontinuity surface in the cur-
rent configuration, see Figure 1, related to N through the formula
n = [F−TN]/∣F−TN∣ and g is a vector describing the jump.

Figure 1: Discontinuity surface in reference and current configu-
ration

Using incrementally linear constitutive relation between the
rates of first Piola-Kirchhoff stress tensor and the deformation
gradient Ṗ =DPF

∶ Ḟ, and applying the relation Ḟ = lF, the
following condition is obtained

[DPF
∶ [g ⊗N]]N = 0 (3)

The above equation has a non-trivial solution if the determinant
of the acoustic tensor defined in the following equation is zero

Qij =D
PF
iKjLNKNL (4)

The acoustic tensor formulated for P and F has an analogous
form as for the small strain analysis, see e.g. [1], however, it can
be noticed that P and F are nonsymmetric. The acoustic tensor
can be also formulated for symmetric stress and strain tensors:
in reference configuration the second Piola-Kirchhoff stress and
the right Cauchy-Green deformation tensors can be used with the
relation between them Ṡ =DSC

∶ Ċ and then

Qij =
1

2
[NKSKLNL] δij +NLFiKD

SC
KLMNFjMNN (5)
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Alternatively, in the current configuration the acoustic tensor has
the following form

Qij =
1

2
[nkσklnl] δij + nkD

σd
ikjlnl (6)

where σkl are the components of the Cauchy stress tensor and
tangent Dσd is a spatial counterpart of tangent DSC .

It is worth mentioning that, alternatively to the jump condi-
tions, a stability analysis can be performed using wave propaga-
tion approach, for the detailed explanation see e.g. [1].

3. Analysis for thermomechanical models

For thermomechanical coupling additional requirements for
jumps of the heat flux (rate) to be zero across the discontinuity
surface in the current configuration are formulated

⟦q⟧ ⋅ n = 0, ⟦q̇⟧ ⋅ n = 0 (7)

with spatial continuity of the temperature field ⟦T ⟧ = 0. As-
suming a stationary discontinuity surface, the jump of tempera-
ture rate can be non-zero, see [3]. Further, the thermomechani-
cal analysis of instabilities leads to two equations resulting from
Equation (1) and the balance of energy which involves the jump
of rate of temperature and the jump of divergence of the heat flux.
A detailed discussion of stability conditions for thermo-inelastic
materials is included in [3].

4. Elasto-plasticity with thermomechanical coupling

The verification of ellipticity condition is performed for the
isotropic elasto-plastic material in isothermal and nonisothermal
conditions. Here, the thermomechanical model is succinctly pre-
sented.

The description is based on the multiplicative decomposition
of the deformation gradient into thermal, elastic and plastic parts
and on a suitable free energy potential, c.f. [4]. Associative rate-
independent plasticity with Huber-Mises-Hencky yield criterion
is considered.

Thermomechanical coupling involves thermal expansion,
heat generation during plastic deformation and dependence of
the yield strength on temperature change (thermal softening).
The Fourier heat equation for the current configuration is applied
for the transient process. A detailed description of the analysed
model and its implementation within the Finite Element Method
are included in [5].

5. Numerical results

The ellipticity condition is numerically verified for two- and
three-dimensional cases. For the former one, the plane strain con-
ditions are assumed. The material tangent is computed at the level
of a Gauss point, using automatic differentiation available in Ace-
Gen package [6], and saved in a data base for further analysis in
AceFEM environment. For plane strain analysis the acoustic ten-
sor is computed for vectors N = [cosα, sinα,0] where angle
α ∈ [0, π] is discretized using a specified increment. In the three-
dimensional case the analysed vectors depend, in turn, on two
discretized angles: N = [cosα cosβ, sinα cosβ, sinβ]. Alter-
natively, the minimization of det(Q) with respect to angles α
and β, presented in [7], can be used.

In Figure 2 a response of an elongated rectangular plate with
imperfection in plane strain conditions is presented. The applied
material model is ideal elasto-plasticity. The decreasing load-
displacement diagram and necking observed in the deformed
mesh result from geometrical softening.
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Figure 2: Sum of reactions vs enforced displacement multiplier
and deformed mesh for elongated plate in plane strain

The analysis of the ellipticity condition is performed for the
Gauss point in the imperfect element. The minimum value of the
determinant of the acoustic tensor versus enforced displacement
multiplier is presented in Figure 3. It can be observed that in the
initial phase of the plastic response the determinant of Q reaches
negative values providing a confirmation of the loss of ellipticity.
The analysis of the critical directions in the reference and current
configurations reveals that the normal vector n in the deformed
specimen is inclined about 45 deg during the whole deformation
process.
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Figure 3: Minimum value of the determinant of acoustic tensor
vs enforced displacement multiplier
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