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Abstract

The aim of the paper is to analyse the synchronisation phenomenon of a rotating structure composed of three beams attached to
a rigid hub. It is assumed in the analysis that one beam is10% thicker comparing to the remaining ones. Furthermore, two possible
variants of excitation are considered: (a) torque given by harmonic function or (b)torque produced by a chaotic oscillator. Moreover,
non-classical effects as material anisotropy, transverseshear and cross-section warping are taken into account for flexural composite
beams oscillations. The Hamilton’s principle is used to derived the partial differential equations of motion. The reduction to ordinary
differential equations of motion have been done by Galerkin’s method. Next, the equations have been solved numericallyand the
resonance curves have been analysed in terms of synchronised motion of the hub and blades of the rotor.
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1. Introduction

The famous Huygens experiment with synchronisation of two
clocks have been recalled in [2], where the basic definition of sy-
nchronisation phenomenon has been given. Most of the papers
about synchronisation phenomenon described structures compo-
sed of pendulums in a typical vertical plane. However, the sy-
nchronisation of the hub with two pendulums rotating in a hori-
zontal plane have been presented in [5]. Furthermore, authors in
that paper analysed nonlinear dynamic of the rotor. The rotating
structures are very well known in mechanical engineering, stan-
dard examples are wind turbins, jet engines and helicopter rotors.
Dynamics of a thin-walled composite rotating structure in linear
rigor have been studies in [1, 3].

2. Model and equations of motion

The paper investigates a system composed of three composite
elastic beams attached to a rigid hub of radiusR0, as shown in
Figure 1.

Figure 1: Model of the rotating hub with three elastic beams

The hub may oscillate or rotate about vertical axisCZ0, the
current position is given by an angleψ, the length of each beam
is describe byli, the width and height of the cross-section bydi
andhi, respectively, wherei = 1, 2, 3. The system considers two
identical beams (No.1 and 3) and one with10% higher thickness
thus, the second (No. 2) beam is de-tuned. The composite mate-
rial of the beams is linearly elastic.

The Hamilton’s principle of least action was used to derive

the system of the partial differential equations (PDEs) forthe hub
and for the each beam [1, 3]. Next, the reduction from the PDEs
to ordinary differential equation was done by the Galerkin pro-
jection method. After conversion, the set of governing equations
takes the form:

(1 + Jh + Jb2 + Jb3 − αh12q
2

1 − αh22q
2

2 − αh32q
2

3)Ω̇

+αh11q̈1 + αh21 q̈2 + αh31q̈3 − αh13q1q̇1Ω

−αh23q2q̇2Ω− αh33q3q̇3Ω+ ζhΩ = µ

q̈1 + α12Ω̇− α14q1q̇1Ω + (α11 + α13Ω
2)q1 + ζ1q̇1 = 0

q̈2 + α22Ω̇− α24q2q̇2Ω + (α21 + α23Ω
2)q2 + ζ2q̇2 = 0

q̈3 + α32Ω̇− α34q3q̇3Ω + (α31 + α33Ω
2)q3 + ζ3q̇3 = 0

(1)

Dynamics of the hub is described by the first equation of the
set of Eqs.(1). TheJh andJbi are dimensionless mass moment
of inertia of the hub and dimensionless mass moment of inertia of
each beam, respectively expressed as a magnitude of the inertia
of the first beam. The dimensionless angular velocity is descri-
bed byΩ = dψ

dt
. Excitation is defined by torqueµ imposed on

the hub, and is considered in two variants: (a) as a driving tor-
que, expressed asµ = µ0+ρ sinωt or (b) as a chaotic oscillator,
whereµ = ρx andx is calculated from the Duffing’s equation
ẍ+kẋ+x3 = B cosωt, that was presented in [4]. The dynamics
of the beams is described by the last three equations of set (1),
whereq1, q2 andq3 are generalized coordinates corresponding to
the complex flexural-torsional specimen deformation. Damping
of the system is included by arbitrary introduced viscous damping
coefficientsζ1, ζ2, ζ3 andζh for the beams and hub, respectively.

3. Numerical studies

Numerical studies have been performed for the system com-
posed of three beams attached to the rigid hub, considering that
beam No.1 and No.3 are identical, but beam No.2 is de-tuned,
due to10% higher thickness. Allαij factors present in equations
of motion (1) have been derived for the physical model and are
given in table 1.
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Table 1: Dimensionless coefficient, based on the real physical model
α11 = α31 12.0388808306 α21 14.5664355288 αh11 = αh31 0.0112028592 αh21 0.0123216629
α12 = α32 1.9765664564 α22 1.9768127528 αh12 = αh32 0.0084706516 αh22 0.0093152417
α13 = α33 0.4946581624 α23 0.4946272964 αh13 = αh33 0.0169413032 αh23 0.0186304834
α14 = α34 1.55170796 α24 1.551483824 ζh 0.1 ζi 0.002

As it has been mention earlier, rotor dynamics is studied for
two variants when driven by harmonic torque or the chaotic os-
cillator. However, in this abstract we will present only solutions
for periodic driving torque.
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Figure 2: Resonance curve of angular velocity of the hub for am-
plitude of excitationρ = 0.01

Numerical simulations have been performed to the arbitrary
selected amplitude of excitationρ = 0.01 of the harmonic
function. Response of the hub is shown in the Figure 2, with
two resonances, first close toω ≈ 3.48 and secondω ≈ 3.82.
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Figure 3: Resonance curves of displacements of each beam
(beam No.1 and No.3- green line, beam No.2 - blue line for am-
plitude of excitationρ = 0.01.

In the Figure 3, response of the beam is shown, green line
represents two identical beams (No.1 and No.3), while blue line
concerns the response of the de-tuned beam. In both cases two
resonances occurred, first close toω ≈ 3.48 and the second one
close toω ≈ 3.82. The main resonance is observed for beams
No.1 and No.3, with very small oscillations of the second beam.
In this frequency zone we observe synchronisation of motionof
beams No.1 and No.3 and large reduction of motion of beam
No.2. Around the second resonance zone oscillations are loca-
lised in beam No.2, while beams No.1 and No.3 are very small
but still synchronised.
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Figure 4: Portrait of a strange chaotic attractor obtained from
Duffing equation, applied as driving torque.

In the future studies will consider de-tuned structure excited
by the chaotic oscillator. The Poincaré portrait of the chaotic os-
cillator, which will be used to excite the system is shown in the
Figure 4.

4. Conclusion

For the detuned structure two resonances have been obser-
ved, the fist resonance occurs close toω ≈ 3.48 and the second
at ω ≈ 3.82. Resonance curves for amplitudes of the first and
third beam are exactly the same (q1, q3), due to their full symme-
try. From the other hand, the main resonance for the beam No.2
is very small. For the second resonance zone, vibrations arelo-
calised in the beam No.2 with very small oscillations of beams
No.1 and 3. At the first and the second resonance identical beams
No.1 and 3 exhibit the complete synchronisation of motion. For
the second beam synchronisation with locked phase is noticed.
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tion of rotating composite beam with a nonconstant rotation
speed and an arbitrary present angle,Meccanica, 49(8), pp.
1833-1858, 2014.

[2] Kapitaniak, M., Czolczynski, K., Perlikowski, P., Stefanski,
A., Kapitaniak, T., Synchronization of clocks,Physics Re-
ports, 517, pp. 1-69, 2012.
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