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Abstract 
 

If the inverse problem is solved by numerical approximation of an unknown inverse relation (by a suitable ANN that is chosen to 
approximate the inverse relation), the mathematical formulation of the inverse problem is absent. Only forward problem is solved 
many times to prepare the training set for ANN. Thus a formal analysis of mathematical formulation of inverse problem is 
impossible. In this paper it is shown (by examples) that this missing analysis can be substituted by observations of the numerical 
properties of the training process (progress and results). The subject of the paper is an exemplification of the facts that: if the solution 
of the inverse problem does not exists or if the solution of the inverse problem is not univoque (ambiguous) or if the solution of the 
inverse problem is not well conditioned by the experimental data, an analysis of the learning process of the ANN in the numerical 
model of the inverse problem allows to discover this without any prior qualitative analysis. These statements are illustrated by two 
examples: FWD test for discovering internal structure of a multi-layered plate and identification of parameters in adsorption problem. 
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1. Introduction 

Some of the most important and well-studied mathematical 
issues belong to inverse problem category. In general terms, an 
inverse problem is a generic context of investigation in which 
information on a physical quantity, or more generally on a 
system, are sought starting from measurements or information 
of the indirect type. It is the inverse of a forward problem, in 
which the effects are computed starting from their causes.  

In paper [1] and in same conference papers (f.ex. [2]) 
numerical solutions of various inverse problems have been 
presented. The forward problem was always defined by a set of 
differential equations. The forward solution was thus any of 
engineering solution that determinates the unknown fields of 
these equations having given material parameters and loads. 
Roughly speaking, the inverse problem is the problem of 
identification of material parameters and loads for which 
independent variables of the problem, measured in some points 
of the material domain, take given, known values.  

The kernel of the method presented in our former papers is 
an explicit approximation of an inverse relation, assumed 
always in a form of an Artificial Neural  Network (ANN). The 
inverse relation attributes trial material parameters or loads 
(appearing at the output of the ANN) to the computed via 
forward solution, “measured” data (put at the input of the 
ANN). In order to obtain the correct approximation we have 
used the same algorithm of the network training for many 
various problems. It is clear that the formal, mathematical 
definition of the inverse problem is not necessary in this 
approach. To construct the inverse relation it is enough to repeat 
many times solution of the forward problem, to build a set of 
examples for ANN training. However, the formal analysis of an 
inverse formulation is very important since inverse problems 
are often not well posed. Typically the sensitivity of the inverse 
solution on the type and quality of the input (“measured”) data 
is high. More, some material parameters can be difficult to be 

identified from the given data. This formal analysis of 
mathematical formulation of inverse problem is impossible in 
the frame of our approach. 

In this paper it is shown (by examples) that this missing 
analysis can be substituted by observations of the numerical 
properties of the training process (progress and results). 

2. FWD test as an example of different sensitivity of 
various material parameters on the collected data 

The Falling Weight Deflectometer (FWD) is an instrument 
for “in situ” tests, commonly used to evaluate mechanical 
parameters and to assess the quality of layered structures of 
road and airfield pavements. The deflection, response of the 
pavement to an applied load is used here as an indicator of 
material properties, and structural performance of the pavement. 
Deflections due to an impulse load from the falling weight are 
measured in several points (6 to 9) using geophones aligned on 
a rigid support, mounted on a special purpose vehicle. The 
theoretical deflection is computed basing on the theory of 
elastic, layered half-space statically loaded over the area of the 
falling mass (forward problem). We use virtually simulated data 
for the ANN training. We consider two numerical models: the 
above mentioned elastic, layered half-space and layered plate on 
the Winkler elastic subgrade. For both models the Young 
moduli and Poisson ratios for three layers or for two layers plus 
a Winkler stiffness of the subgrade have been identified. The 
structure of the biggest ANN was taken as follows ({content of 
the layer}): {six input nodes valued with the measured 
deflections plus three nodes for the layers thicknesses}; 
{variable number of hidden nodes}; {chosen mechanical 
parameter}. This is thus simply a system of as many networks 
as needed, all trained with a classical BP algorithm, all of them 
– fully interconnected. We show how that the learning for 
identification of the properties of thin layer (that are not well 
conditioned by the FED data) progress. The training is very 
slow in this case. In contrast, it is shown that test set error and
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learning set error for identifications of dominating layers are 
very small and the learning is several times quicker. We analyse 
also the properties of the training for identification of the 
stiffness of the subgrade. The example of comparison is 
illustrated in Figure 1. Finally we analyse a case of non 
univoque situation (a pathological combination of material 
parameters), we propose an algorithm of the solution in this 
case. It is possible to discover that fact using small ANN. It 
exists an algorithm of splitting the problem into a set of two or 
more univoque problems. 

 

 
Figure 1: comparison of learning quality for two parameters of 
the struture 

3. Identification of parameters of adsorption process as an 
example of training behaviour in a case of wrong 

formulation of the problem  

In an equation of dispersion with adsorption (1) we have to 
identify parameters of the adsorption models appearing in eq. 
(2) (“retardation factors” of Langmuir and Freundlich 
respectively that govern the sorption S). Source intensity Q and 
its position, conductivity k and diffusivity D of the porous 
medium are given in this example. The concentration field c and 
average velocity v of a flow across a permeable stratum are the 
forward solutions here. Obviously, concentrations c are 
measured and given in few point in some time instances.   
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In examples, the considerations are limited to the one 
dimensional case of dispersion with adsorption. It is seen that in 
the case of Langmuir model identification of am and K is 
possible while in the case of Freundlich model is not. It is 
shown that this fact is manifesting in such a manner that the 
training does not progress at all (Figure 2). Also in the case of 
this example we compare few sets of input (measured) data that 

are more or less useful for identification of the sorption 
parameters. This is very important observation since the 
analysis of the forward solution, (necessary for approximation 
of inverse relation) can be used, by a way, as a tool of design of 
the measurement strategy. 

 

 

Figure 2: results of the training: upper graph for K in the 
Freundlich model, bottom graph – identification of the product 
am and K for the same model 

4. Conclusions 

If the solution of the inverse problem does not exists, an 
analysis of the learning process of the ANN in the numerical 
model of the inverse problem allows to discover this without 
any prior qualitative analysis. In this case the training process 
does not progress; If the solution of the inverse problem is not 
univoque (ambiguous), an analysis of the learning process of 
the ANN in the numerical model of the inverse problem allows 
to discover this without any prior qualitative analysis; If the 
solution of the inverse problem is not well conditioned by the 
experimental data, an analysis of the learning process of the 
ANN in the numerical model of the inverse problem allows to 
discover this without any a priori qualitative analysis. 
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