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Abstract 
 

The paper deals with the numerical and analytical modelling of the end-loaded split test for multi-directional laminates affected 
by the typical elastic couplings. Numerical analysis of three-dimensional finite element models was performed with the Abaqus 
software exploiting the virtual crack closure technique (VCCT). The results show possible asymmetries in the widthwise deflections 
of the specimen, as well as in the strain energy release rate (SERR) distributions along the delamination front. Analytical modelling 
based on a beam-theory approach was also conducted in simpler cases, where only bending-extension coupling is present, but no out-
of-plane effects. The analytical results matched the numerical ones, thus demonstrating that the analytical models are feasible for test 
design and experimental data reduction. 
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1. Introduction 

Multi-directional (MD) laminates made of several layers of 
variously oriented fibre-reinforced polymer (FRP) laminae, or 
plies, offer great advantages in many engineering applications 
from aircraft to marine and automotive industries, as they 
enable tailoring the structural response to specific design needs. 
Nonetheless, the widespread use of such structural components 
is hindered by the requirement of more complex analysis tools 
with respect to unidirectional (UD) laminates [19], as well as by 
a poor understanding of the related damage mechanisms and 
failure modes [4], as testified by the lack of standard testing 
procedures for the delamination toughness of MD laminates 
[13]. 

Modelling difficulties for multi-directional laminates 
include the presence of elastic couplings between the extension, 
bending, shear, and torsion deformations and the corresponding 
internal forces and moments [17,18]. Moreover, like composite 
structures in general, they are prone to damage phenomena, 
such as delamination [6,10,14]. 

In previous studies, theoretical calculations and experiments 
concerning different delamination fracture modes have been 
performed for different loads and boundary conditions for 
laminated beams [11,12]. The main goal was to recognise the 
influence of a general ply lay-up with different mechanical 
couplings and boundary conditions on the actual distribution 
fracture toughness along the delamination front with different 
ply angles at interfaces. The current work covers analyses of the 
end loaded split (ELS) test configuration (Fig. 1), defined in the 
ISO 15114 Standard for unidirectional laminates [7]. 

Local discrepancies in the stress/strain fields coming from 
different interfacial fibre-angles generate uneven deformations 
of the specimens’ legs and, consequently, affect the strain 
energy release rate (SERR) distribution along the delamination 
front. In general, mixed-mode fracture conditions should be 
expected [16], so that the adopted fracture criterion should 

allow for each of the three main fracture modes to be 
determined and properly considered. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Configuration of the ELS test specimen 

2. Mechanical couplings in laminates 

According to classical lamination theory (CLT) [8], the 

internal force, [ , , ]Tx xy xyN N NN , and moment, 

[ , , ]Tx xy xyM M MM , vectors are related to the strain measures 

as follows [12]: 
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curvatures, respectively, of the laminate’s mid-plane; A, B, and 
D respectively are the extensional, coupling, and bending 

stiffness matrices. By denoting with k

ijQ  the elements of the 

elastic moduli matrix of the k-th ply (i, j =1...3), with 
kz  the 

distances of the ply surfaces from the mid-plane, and with n the 
total number of plies, the elements of the stiffness matrices are: 
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Note, that each of the matrices A and D can only have two 
forms, reflecting the presence or absence of the in-plane 
couplings. On the contrary, the out-of-plane coupling stiffness 
matrix B takes one of the six different coupled forms: BL, BT, 
BLT, BS and BF and the uncoupled one B0 [18]. This generates a 
great number of coupled layups and shows the extent of the 
unexplored field of coupled laminates mechanical properties. 

3. Calculations 

The calculations of the laminated specimen model were 
performed both using the finite element method (FEM) and an 
analytical approach. The stress state and strain energy release 
rate along the initial delamination front were determined based 
on linear elastic fracture mechanics (LEFM) [5]. Simulations of 
the ELS test in the case of coupled laminates enabled distinction 
of the most problematic couplings from the point of view of a 
proper calculation of SERR in accordance with the ISO 15114 
Standard [7]. Three-dimensional FEM models of ELS test 
specimens with coupled laminates were analysed with the 
commercial software Abaqus [1]. Analyses were conducted up 
to initiation of delamination in accordance with the 
Benzeggagh-Kennane fracture criterion [3], implemented 
through the virtual crack closure technique (VCCT) [9,15]. 

In simpler cases, where only bending-extension coupling is 
present, but no out-of-plane effects, an analytical approach was 
also pursued. The energy release rate and its modal 
contributions were calculated based on both a simplified model, 
where the sublaminates are rigidly connected, and another one, 
where an elastic interface is present at the delamination plane 
[2]. 

4. Conclusions 

The results obtained numerically and analytically for the 
ELS configuration for multi-directional coupled laminates show 
dependence of the deflections and SERR distribution on several 
factors. The most important is the type of coupling, reflected by 
one of the six forms of the matrix B. The intensity of 
perturbation compared to an uncoupled laminate depends on the 
values of fibre orientation angles in the stacking sequence. 
Unexpected occurrence of fracture modes I and III in the ELS 
test setup designed to provide pure mode II in the case of UD 
laminated specimens was also observed. These outcomes are in 
agreement with the results obtained in the ENF study [12]. The 
analytical results matched the numerical ones, thus 
demonstrating that a simplified modelling approach is feasible 
for test design and experimental data reduction. 
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