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Abstract

We propose a mixed finite element formulation to solve the boundary-value problem of a finite elastic body reinforced by two equal
distinct, possibly stiff fibre families. The formulation is based on splitting both the deformation and the stress field into the uniaxial
stretches and tensions along the preferred directions and the remaining deformation and stress, respectively. The stretches and tensions
are the auxiliary 4 fields to be approximated besides the displacements. The resulting 5-field nonlinear mixed formulation is solved
with the Newton-Raphson procedure. We demonstrate application of error estimation and adaptivity.

Keywords: anisotropic, two fibres, adaptivity, inextensible, finite elements

1. Introduction

Strongly anisotropic elastic materials play an essential role
in many fields including mechanics of composits, mechanics of
soft biological tissues and many others. A frequent source of
anisotropy is the presence of reinforcing fibres which display
strong stiffening properties accompanying their stretching. In the
case of soft tissues this role is played by the collagen fibres which
show strong, even exponential stiffening under moderate stretch.
This phenomenon appears as near inextensibility and it is in some
way similar to near incompressibility which is observed for the
ruber-like materials. Numerical modeling of a nearly inextensible
material by the Finite Element Method (FEM) may cause simi-
lar difficulties as approximation of a nearly incompressible solid
body: unstable or oscilatory solutions. The remedy for incom-
pressible mechanics is the well known splitting of the description
of kinematics into the volumetric part (dilatation) and the uni-
modular deformation gradient. It is accompanied by the corre-
sponding split of the stress into the energy conjugate parts: the
spherical contribution of the pressure and the deviatoric stress. In
addition we use a separate approximation for the displacements
u, the dilatation θ and the pressure p. The mixed formulation
involving these 3 fields with adequate approximation in the Qp

and P p−1 finite element spaces for the displacements u and the
auxiliary variables θ and p, respectively, allows one for effective
modeling of the nearly incompressible solid [3].

In our previous works we developed a sort of adaptation of
this approach for the materials with near inextensibility in one
preferred direction [2], possibly accompanied with incompress-
ibility [1]. The present work is devoted to anisotropic materials
reinforced with two families of fibres, that is with two preferred
directions whose stretches cause rapid stiffening in these direc-
tions. Materials of this kind constitute, for instance, soft tissues
of arteries in which case the two directions form two spiral lines
around the artery.

2. Description of kinematics and stresses

In this section we briefly present the main principles of con-
structing the mixed formulation for the materials reinforced with
two families of fibres. We assume that the two preferred direc-
tions of reinforcement are given by two distinct fields of unit vec-
tors GA, A = 1, 2 in the reference configuration. We augment
them with the third direction G3 := G1 × G2/|G1 × G2|. We
consider GA a basis of the curvilinear system of coordinates cor-
responding to some parametrization X = X(ξA), A = 1, 2, 3,
i.e. GA = ∂X/∂ξA. We consider also the basis GA of the
adjoint space (of linear functionals) which is dual to GA:

〈GA, GB〉 = δA
B . (2.1)

We use convective spatial coordinates, i.e. the spatial basis vec-
tors are generated by the parametrization x = x(ζa), ga =
∂x/∂ζa for wich ζ = ξ. It is known that the deformation gra-
dient F , its adjoint F ∗ and their inverses F−1 and F−∗ take the
form:
F = δa

Aga ⊗ GA, F−1 = δA
a GA ⊗ ga,

F ∗ = δa
AGA ⊗ ga, F−∗ = δA

a ga ⊗ GA,
(2.2)

where ga denotes the adjoint basis dual to ga, i.e. satisfying the
condition 〈ga, gb〉 = δa

b . We also introduce the material and
spatial metric tensors:

G = GABGA ⊗ GB and g = gabg
a ⊗ gb, (2.3)

where GAB := GA ·GB and gab := ga · gb. The right Cauchy-
Green deformation tensor takes the form:

C = F ∗gF , C = δa
Aδb

BgabG
A ⊗ GB . (2.4)

We also introduce the structural tensors corresponding to the pre-
ferred directions of fibres:

AF := GF ⊗ GF (no sum), F = 1, 2. (2.5)

We can easily verify that the stretches λF of the preferred direc-
tions can be expressed as follows:

λF = 〈C, AF 〉1/2. (2.6)
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We define the stretchless part
9
C of the right Cauchy-Green tensor

(analogous to the unimodular C̄ for incompresible analysis):
9
C:= C −

X
F

(λ2
F − 1)AF , (2.7)

where AF := GF ⊗GF . We also define the projection operator
9
IP which extracts the tensionless part of the stress:
9
IP := II −

X
F

AF ⊗ AF . (2.8)

With these notions we propose the ansatz for the strain energy
function Ψ = Ψ(C; A1, A2) in the form taking into account
that C is expressed by the dependent on deformation tensor

9
C

and separately approximated stretches λ̃F :

Ψ̃(
9
C, λ̃1, λ̃2; A1, A2) = Ψ(C; A1, A2) (2.9)

in which we shall enforce decoupling between the dependence on
9
C and λ̃F :

∂2Ψ

∂
9
C ∂λ̃F

= 0. (2.10)

Selecting separate approximation of stretches λ̃F suggests as-
suming the following augmented decoupled strain energy ansatz:8<: Ψ = Ψ̃(

9
C, λ̃1, λ̃2; A1, A2) −

P
F ρ̃F [λ̃F − λF (C)],

Ψ̃ =
P

F Ψ‖F (λ̃F )+
9
Ψ (

9
C, A1, A2).

(2.11)

The assumptions above and the Clausius-Plank inequality lead to
the following constitutive equations for the 2nd Piola-Kirchhoff
stress:8>>>>>>>><>>>>>>>>:

S =
P

F ρ̃F λ−1
F AF +

9
S,

9
S=

9
IP

"
2

∂
9
Ψ

∂
9
C

#
,

ρ̃F = Ψ′
‖F (λ̃F ),

λ̃F = λ(C)F .

(2.12)

A particular selection of the strain energy functions
9
Ψ and Ψ‖F

follows the suggestions of Balzani et al. [4] and Simo and Pis-
ter [5]:8<:

2
µ

9
Ψ= Λ̄[ln

9
J ]2 − 2ln(

9
J ) + (

9
I 1 −3) +

P
F Φ̄(

9
K1,F −1)2,

2
µ
Ψ‖F (λ̃F ) = Γ̄ (λ̃2

F − 1)2,

(2.13)

where µ is the shear modulus,
9
I 1,

9
I 2 are the 1st and 2nd invari-

ants of
9
C,

9
K1,F =

9
I a −

9
I 1 +

9
I 2, a = 2F + 3, F = 1, 2 while

9
I 5,

9
I 7 are the joint invariants of

9
C and AF :

9
I a= 〈

9
C

2
, AF 〉.

Parameters Λ̄, Φ̄, Γ̄ are the nondimentional material characteris-
tics. The mixed formulation for (u, ρ̃F , λ̃F ) involves the prin-
ciple of virtual work (expressing equilibrium), the identification
λ̃F = λF (C) and the constitutive relation for ρ̃F , and it takes
the form: find (u, ρ̃F , λ̃F ) ∈ (V + u0) × Q4 such that:8>>>>><>>>>>:

Z
Ω

〈DuE(u)[δu], S〉dV =

Z
Ω

〈Gδu, B̄〉dV+

Z
ΓN

〈Gδu,P̄ 〉dA,Z
Ω

δρ̃F {λF (C) − λ̃F }dV = 0,Z
Ω

δλ̃F {Ψ′
‖F (λ̃F ) − ρ̃F }dV = 0,

(2.14)

for all δu ∈ V, δλ̃F , δρ̃F ∈ Q, V = {v ∈ H1(Ω) : v =
0, on ΓD}, Q = L2(Ω). In (2.14) B̄ denotes the volume
forces, P̄ and u0 are the Neumann and Dirichlet data on ΓN

and ΓD . In addition E = 1
2
(C − I) and DuE(u)[δu] =

1
2
(F ∗∇δu + ∇∗δuF ). The FE approximation of (2.14) re-

sults in a system of nonlinear equations which is solved using the
Newton-Raphson algorithm applied to linearization of (2.14).

3. A numerical example

We solved with an h-adaptive FEM presurization of a tube of
the height h = 10 and the internal and external radii r1 = 3.317
and r2 = 4.057. The tube is reinforced with two families of fi-
bres which constitute the spiral lines inclined by the angle of 300

to the horizontal plane. The material data are as follows: µ = 1,
Λ̄ = 1, Φ̄ = 1, Γ̄ = 10. The loading internal pressure p = 2.0.
Figure 1 presents the contour map of the Kirchhoff stress σφφ on
the deformed configuration after performing 4 steps of refinement
on the initial mesh of 4 × 4 × 1 elements.

Figure 1: Pressurization of a tube on a p = 2 mesh. Contour map
of σφφ (circumferential stress) on a deformed configuration
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