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Abstract 
 

The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conduc-
ted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macrosco-
pically homogeneous material. Finite element method software is applied to solve a boundary-value problem in both scales. Global 
optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to 
collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached. 

Keywords: identification, porous material, numerical homogenization, evolutionary algorithm,  

 

1. Introduction 

Porous materials, defined as solids containing pores, are 
microscopically inhomogeneous materials. They can be 
classified by different criteria like: pore size, pore shape, 
materials and production methods. Various porous materials: 
metals, ceramics and glasses are used in biotechnology, 
mechanical engineering, electronics and chemistry [4]. The non-
destructive identification of material parameters of porous 
structures is necessary due to the manufacturing process, which 
results in material properties’ uncertainties. 

The micro-scale structure of porous media must be conside-
red to model them with proper accuracy. To obtain macrosco-
pically homogenous material equivalent to the microscopically 
inhomogeneous one, different homogenization methods may be 
applied. In the present paper, numerical homogenization method 
is employed to obtain the equivalent elastic material properties 
values of porous material. The boundary-value problem is 
solved in both scales by means of the finite element method 
(FEM) commercial software. Modal analysis is carried out to 
obtain necessary measurement data.  

The aim of the paper is to perform the identification of the 
microscale material properties of porous media based on the 
measurements performed at a macro scale. As the identification 
is usually considered as an optimization problem, different 
optimization methods may be applied. In the present paper, the 
identification is performed by means of the global optimization 
method. 

2. Formulation of the identification problem  

Different problems in the mechanics of materials and 
structures may be described as identification ones. Identification 
problems belong to the class of inverse problems which are 
mathematically ill-posed ones (the lack of a unique solution) 
[2]. The identification is performed by measuring the response 
of the system to the given excitations. The number as well as 
the type of measurement data may strongly influence the 
identification results.  

The identification is performed as the minimization of an 
objective function J0 with respect to the vector of the design 
variables x: 
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where: x = (xi) – a vector of identified parameters; hi –  measu-
red values of state fields; qi – values of the same state fields 
calculated for the numerical model, N – a number of measure-
ment data. 

3. Global optimization methods 

Gradient optimization methods are fast and precise, but 
usually lead to local optima. To increase the possibility of 
reaching the global optimum, the global optimization methods, 
e.g. evolutionary algorithms, particle swarm optimizers or 
artificial immune systems, are usually employed. As global 
optimization algorithms work on a set (population) of possible 
problem solutions, the searching is multidirectional. Such algo-
rithms are commonly applied if objective function gradient is 
hard or impossible to obtain, as the only necessary information 
for them to work is the objective function value [7].  

To solve the identification problem, MOGA evolutionary 
algorithm, embedded in the ANSYS Workbench software 
package, is used. MOGA is a hybrid variant of NSGA-II 
algorithm [3] and can be applied for single- and multi-objective 
optimization problems with both binary end floating-point input 
parameters. The application of the EAs to the multi-objective 
and multi-scale optimization of inhomogeneous materials is 
presented in [1]. 

4. Numerical homogenization 

The direct application of more than one scale for the 
numerical calculations performed by means of FEM leads to an 
enormously large system of equations. The problem may be 
surmounted by means of different homogenization methods like 
mean-field approach, variational methods or numerical 
homogenization method [5]. 
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Table 1: Identification results 

   Actual   Found values 

 Range  value  Location randomness 5%  Location randomness 10% 
     avg. value st. dev. error [%]  avg. value st. dev. error [%] 

E [GPa] 70÷400  113.8  114.0086 0.4484 0.1833  113.7579 0.4118 0.0370 

 0.2÷0.4  0.342  0.3255 0.0295 4.8246  0.3412 0.0276 0.2339 

 
Numerical homogenization method is employed in the 

present paper as it allows modelling the complex geometry of 
microstructure. Assuming periodicity of the considered struc-
ture, representative volume element (RVE) concept is applied. 
RVE fully describes the whole structure (global periodicity) or 
its part (local periodicity) 

The characteristic dimensions of RVE should be larger than 
the characteristic dimensions at micro scale and considerably 
smaller than the macro-scale ones. The additional conditions 
which must be satisfied for RVE are: i) the Hill-Mandel 
condition and ii) appropriate boundary conditions (uniform 
traction conditions, uniform displacement conditions or periodic 
boundary conditions) [8].  

The analysis of the RVE allows the determination of the 
constitutive relation between averaged field variables, like 
stresses or strains, of the microscopic model. If the FEM is 
applied to solve the boundary-value problem, the RVE must be 
assigned to each integration point at the micro scale. ANSYS 
Workbench FEM software is applied to solve boundary-value 
problem in both scales. The application of the FEM software 
and the optimization tool available in the same software 
package reduces the time necessary for information exchange 
between independent systems. 

5. Numerical example 

Porous metals, like stainless steels and titanium, and porous 
ceramics (alumina, hydroxyapatite) are commonly used in 
prostheses. Open pores are required to enhance tissue ingrowth 
and fixation of the implant.  

A hip implant made of Ti-6Al-4V alloy is considered [6]. 
The elastic constants of the alloy are: the Young’s modulus 
E=113.8 GPa, the Poisson’s ratio υ=0.342 and the density 

=4430 kg/m3. The upper part of the implant is made of the 
regular alloy while the lower part is made of porous variant of 
the same alloy (Figure 1). The aim is to identify material elastic 
constants values for the porous section.  The modal numerical 
experiment has been performed to collect first 10 eigenfreq-
uencies of the structure.  

 

 

a)    b) 
Figure 1: a) Geometry and b) FEM mesh (for the intersection) 

RVE model contains 125 spherical voids with assumed (5% 
or 10%) ratio of void location randomness (Figure 2). The para-
meters of MOGA are: the number of individuals ni=100, the 
arithmetical crossover probability pac=0.98, the uniform muta-
tion probability pum=0.01; the maximum number of generations 

ng=40. The identification procedure has been performed 30 
times for each RVE variant. The results are collected in Table 1. 

 

 

     

a)    b) 
Figure 2: a) Geometry and b) FEM mesh for the RVE with 10% 
void location randomness 

6. Final conclusions 

Multiscale global identification has been conducted. To 
solve the identification task global optimization methods (EA), 
FEM commercial software and numerical homogenization 
algorithm have been combined. 

The obtained identification results are satisfactory, although 
Young’s modulus has been identified with higher precision than 
Poisson’s ratio for both RVE variants. It can be also observed 
that a higher level of location randomness results in lower 
values of the identification error.  
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