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Jan Jaśkowiec1, Piotr Pluciński2 and Anna Stankiewicz3
1Faculty of Civil Engineering, Cracow University of Technology, Institute for Computational Civil Engineering

ul. Warszawska 24, 31-155 Cracow, Poland
e-mail: j.jaskowiec@L5.pk.edu.pl

2Faculty of Civil Engineering, Cracow University of Technology, Institute for Computational Civil Engineering
ul. Warszawska 24, 31-155 Cracow, Poland

e-mail: p.plucinski@L5.pk.edu.pl
3Faculty of Civil Engineering, Cracow University of Technology, Institute for Computational Civil Engineering

ul. Warszawska 24, 31-155 Cracow, Poland
e-mail: a.stankiewicz@L5.pk.edu.pl

Abstract

In the paper the problem of free vibrations of rectangular plates is approached. Both, homogeneous plates and multi-layered laminates
are taken into account. In the analysis the method called FEM23 is used. The name derives from the fact that three-dimensional (3D)
finite element results are obtained on the basis of two-dimensional (2D) mesh. Within the method, the 3D approximation is constructed
as a combination of 2D in-plane approximation with 1D transverse approximation. The in-plane approximation is constructed using
2D planar finite element mesh while for 1D transverse approximation the Lagrange polynomials are applied. The orders of in-plane
and transverse approximations are independent of each other. The full 3D mathematical model of free vibrations is calculated on in-
plane 2D mesh. The smart postprocessing tailored to FEM23 is applied for 3D visualisation of the solution. The results of numerical
calculations for rectangular plates with various boundary conditions are presented. Solutions obtained using FEM23 are compared with
the analytical results or with the ones computed using well established FEM package.
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1. Introduction

The problem of 3D numerical modelling of free vibrations
of rectangular homogeneous and laminated plates is addressed in
the paper. The natural frequencies and the forms of vibrations
are aimed to be determined in the analysis. Laminated compos-
ites plates are frequently used in engineering applications due to
their properties such as high strength and durability in respect
to weight. Thus, the numerical modelling of laminated plates is
found in the mainstream of scientific research, e.g. [1].

The two-dimensional (2D) numerical model is formulated for
a robust full three-dimensional (3D) numerical analysis of the
eigenvalue problem. The method called FEM23 (3D finite ele-
ments method on 2D mesh) [2, 3] is used. It means that only 2D
discretisation for the whole structure is applied, but full 3D re-
sults are obtained. FEM23 is suitable for the analysis of both ho-
mogeneous and laminated plates. It is assumed in this work that
the laminated plate consists of a set of homogeneous layers. The
FEM23 is based on combination of 2D in-plane approximation
with 1D transverse approximation. The orders of in-plane and
transverse approximations are independent of each other. The
in-plane approximation order results from the order of finite el-
ements (FE) in a 2D mesh, while in the transverse direction the
approximation may change from the 1st up to the 4th order for
each layer, depending on the layer thickness. The method is com-
pleted with special post-processing in which full 3D results for
laminated plate may be visualised. In the standard 3D FEM ap-
proach the 3D mesh has to be used. In a situation when laminated
structure is analysed, 3D meshing has to be adjusted to the thick-
ness of layers. In FEM23 only 2D mesh is used and the structure
may consists of thick as well as with very thin layers. The order
of transverse approximation can be adjusted to the thickness of

layers, for example 1st order for thin layers and up to 4th order
for thick layers whereas the in-plane order is set independently.
FEM23 is suitable to model thin and thick plates, in contrary to
standard 2D plates models where various hypothesis are used de-
pending on the plate thickness, see [4].

For the sake of clarity the FEM23 is presented for homoge-
neous plate which, afterwards, may be easily extended to multi-
layered plate.

2. Numerical model of free vibrations

If the structure load (value, direction, point of application)
changes in time or has impact type (suddenly applied/removed
load) the dynamic analysis of the structure is required. The vari-
ational form of the equilibrium equation for the considered prob-
lem, with appropriate boundary conditions, can be written as∫
V

ε(V) : E : ε(U) dV −
∫
V

ρf2 V·U dV = 0 (1)

where E is the Hooke’s elasticity tensor, f is the frequency of
vibrations, U is the function of vibration amplitudes and V is
the test function. The small strains are assumed so in eq. (1) the
Cauchy strain is used

ε(U) =
1

2

(
∇U + (∇U)T

)
(2)

The spatial approximation of U is presented as combination
of transverse and in-plane approximations

U(x, y, z) =

n∑
i

Ni(z)Φ(x, y)Ǔi = Ψ(x, y, z)Ǔ (3)
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where Ni are the 1D Lagrange polynomials, Φ is the approxi-
mation matrix based on 2D in-plane finite element mesh, Ψ is
the 3D approximation matrix and Ǔ is the vector of degrees of
freedom.

Following the procedure described in detail in [3] the volume
integral are composed of combinations of 2D in-plane integral
with 1D transverse integral. In the transverse direction the ex-
plicit Gauss integration is applied. Finally, eq. (1) leads to dis-
crete eigenvalue problem that has the following matrix form(
K1 + K2 + K3 + K4 − f2M

)
Ǔ = 0 (4)

where the matrices Ki and M are expressed with the help of 2D
in-plane integrals. For example the definitions of K2 and M are
as follows

K2 =

∫
Sm

g∑
k

wk

(
Ψ,Tz ·E2 : ∇̄Ψ

)∣∣∣
zk

dS (5)

M =

∫
Sm

ρ

g∑
k

wk

(
ΨT·Ψ

)∣∣∣
zk

dS (6)

where E2 is the appropriate tensors based on the Hooke’s elas-
ticity tensor, ∇̄ is the in-plane gradient operator, zk and wk are
the appropriate point and weight of Gaussian quadrature, respec-
tively.

3. Examples

To show the efficiency and accuracy of the method the re-
sults of calculations for rectangular plates with various boundary
conditions are presented. Solutions obtained using FEM23 are
compared with the analytical results, e.g. [5], or with the ones
computed using commercial FEM package. Two examples are
presented here where the simply supported thin plate and in the
following the clamped laminated glass are considered.

3.1. Free vibrations of the simply supported plate

The thin square plate is considered. The results are com-
pared with analytical solution for thin plate model [4]. The fol-
lowing geometrical and material data are adopted: side length
a = 1.2 m, thickness h = 0.0151 m, Young’s modulus E =
1.47 108 kN/m2, Poisson’s ratio ν = 0.3, material densityρ =
104 kg/m3.

The analytical solution is obtained solving the following four-
order differential equation

∇2∇2W (x, y)− µ

Dm
ω2W (x, y) = 0 (7)

where Dm is the bending stiffness, µ = ρ h, W (x, y) is the de-
flection amplitude and ω = 2Πf is angular frequency of vibra-
tions. In this case the analytical solution can be obtained using
Navier’s method and is expressed by the function

W (x, y) =

∞∑
i=1

∞∑
j=1

Wij sin
i π x

a
sin

j π y

a
(8)

that satisfies the appropriate mixed boundary conditions. The ob-
tained analytical values of ω are as follows

ω(i,j) =
π2

a2
(
i2 + j2

) √Dm

µ
(9)

Finally, the results of analytical calculations reads: ω(1,1) =
240.16 rad/s, ω(1,2) = 600.40 rad/s, ω(2,2) = 960.64 rad/s. Sim-
ilar results have been obtained using FEM23 method: ω(1,1) =
239.5 rad/s, ω(1,2) = 599.5 rad/s, ω(2,2) = 957.3 rad/s.

3.2. Free vibrations of laminated glass

The rectangular 2× 1 [m] laminated glass (LG) plate is anal-
ysed in this example. The LG consists of two 5 [mm] glass panes
bonded by 0.38 [mm] layer of PVB (polyvinyl butyral). The plate
is clamped on the one short side and supported on the opposite
side. The material parameters for LG are shown in Tab. 1.

Table 1: Material parameters for glass and PVB.

Property Material

Glass PVB

E [GPa] 64.3 3.73×10−3

ν 0.23 0.45
ρ [kg/m3] 2300 1100

Figure 1: Laminated glass plate – the fourth mode of vibrations.

The computed values of the natural frequencies reads:
ω(1,1) = 63.78 rad/s, ω(1,2) = 112.28 rad/s, ω(2,2) =
171.79 rad/s. For analogous monolithic (glass) plate the ob-
tained values are: ω(1,1) = 70.92 rad/s, ω(1,2) = 139.95 rad/s,
ω(2,2) = 212.62 rad/s. In the Fig. 1 the fourth mode of vibra-
tions of the LG is shown where the one vertex is focused. In spite
of the fact that the PVB layer is very thin the FEM23 is able to
perform full 3D analysis of such a structure.

4. Conclusions

In this work full 3D free vibrations analysis has been per-
formed for homogeneous and laminated plates using FEM23. In
this method only 2D in-plane mesh is needed for 3D modelling.
In a case of homogeneous thin plate a great agreement has been
achieved between numerical modelling and analytical solution.
The effectiveness and flexibility of the FEM23 have been proved
by the successful analysis of the complex laminated structure.
In a case of laminated glass the inner bonding PVB layer is ex-
tremely thin since it thickness is over 2500 times smaller in re-
lation to characteristic plate dimension. It has been shown that
FEM23 is able to perform the 3D free-vibrations analysis for such
a structure.
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[4] Radwańska, M., Stankiewicz, A., Wosatko, A. and Pamin,
J. Plate and Shell Structures. Selected Analytical and Finite
Element Solutions Wiley, Chichester, UK, 2017

[5] Reddy, J.N., Theory and Analysis of Elastic Plates and
Shells 2nd ed. CRC Press/Taylor & Francis, Boca Raton-
London-New York, 2007.


