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Abstract 
 

Topology optimization of structures under design-dependent self-weight load is investigated in this paper. This problem deserves 
attention because of its significant importance in engineering, especially nowadays when topology optimization is more often applied 
to design large engineering constructions like for example carrying systems of tall buildings. It is worth noting that well known 
approaches of topology optimization successfully applied to structures under fixed loads cannot be directly adapted to the case of 
design-dependent loads, so that this issue can be a challenge also for numerical algorithms. The paper presents the application of a 
simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is 
based on Cellular Automata concept, application of which can produce effective solutions with low computational cost.  
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1. Introduction 

The idea of topology optimization introduced by Bendsoe 
and Kikuchi [2] has been for a few decades one of the most 
intensively and thoroughly investigated fields of structural 
optimization. The nature of that approach is to find the optimal 
distribution of material within a design domain. The most 
common approach is the minimization of compliance of a 
structure subject to a total volume constraint while the structure 
loads are fixed. Much less common problem is topology 
optimization with design-dependent loads like for example 
thermo-elastic loads, surface pressure loads, centrifugal loads, 
and finally structural self-weight. Topology optimization of 
structures under design-dependent loads is very challenging 
because it cannot be treated as an extension of standard 
formulation of topology optimization under fixed load and 
therefore requires modification of known and well recognized 
approaches.  

One of the first applications of topology optimization to 
structures under self-weight loading is discussed in [6]. There 
are two main issues observed and reported by the authors. First 
one is a non-monotonous behavior of the compliance. The 
second one is called parasitic effect which can be observed for 
low density regions when using a standard SIMP approach [1]. 
This effect enforces application of a new element stiffness 
update function (see e.g. [6] and [9]) or redefinition of the 
element density update model [7]. It is worth noting that in [6] 
another very interesting effect has been reported, namely 
unconstrained character of the optimum, what means that the 
volume constraint can be inactive for optimal topology. As far 
as the effect of self-weight impact on topological optimization 
is concerned the recently published paper [8] should also be 
mentioned.  

This paper presents the application of a simple but efficient 
non-gradient method to topology optimization of elastic 
structures under self-weight loading. The algorithm is based on 
Cellular Automata concept, application of which can produce 
effective solutions with low computational cost.  

2. Formulation of topology optimization problem 

As already mentioned, the classical topology optimization 
problem is the minimization of structure compliance: 
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where ui is the element displacement vector and ki is the 
element stiffness matrix. The objective is usually subject to a 
total volume constraint V=κV0, where κ is a prescribed volume 
fraction and V0 is a design domain volume. The most effective, 
and the most common material interpolation scheme 
implemented in topology optimization problems is the power 
law approach known as SIMP - solid isotropic material with 
penalization  
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In (2) the elastic modulus Ei of each element is represented as a 
function of design variables being relative densities di of 
material (0 ≤  dmin  ≤ di  ≤ 1), p is a penalization power, whereas 
E0 and ρ0 are the elastic modulus and density of a solid material, 
respectively. To avoid a parasitic effect reported in [6] the 
modification of standard SIMP method is necessary so that the 
material density ρi of each element is defined according to: 
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3. Cellular Automata basics 

The gradient-based mathematical programming algorithms  
are nowadays more often replaced by heuristic techniques like 
Cellular Automata (CA). The concept of CA is based on 
modelling behaviour of a complex systems by simple rules. The 
application of CA to structural optimization requires 
decomposition of a considered domain into lattice of cells states 
of which are represented by design variables di. The iterative 
process of evaluation of design variables values is governed by 
the local update rule defined as: 
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In (4) quantities α0 and αk are components associated with a 
central cell and cells forming its neighbourhood. Their values 
are calculated based on comparison of values of compliance 
found for particular cells with the selected threshold value. The 
quantity m stands for a move limit. Numerous applications of 
proposed CA rule to optimization of structural topology of both 
plain and spatial elastic structures under fixed loads can be 
found in [3], [4] and [5].  

4. Numerical example 

Plane, elastic structure presented in Figure 1 is chosen to 
demonstrate the efficiency of the applied algorithm. 
Rectangular domain of width 16a and height 4a (where a = 1m) 
is discretized with regular mesh of 6400 elements. Applied 
material properties are as follows: Young modulus E = 1000 Pa, 
Poisson ratio ν=0.3, material density ρ = 1 kg/m3. The volume 
fraction is set to be equal 0.5. The gravitational acceleration 
equals 9.81 m/s2. First, the topology optimization procedure has 
been performed for a structure under self-weight only. The final 
topology is presented in Figure 2. The resulting compliance 
equals 121 Nm. For comparison, the same task has been solved 
using ANSYS topology optimization procedure, resulting in 
compliance of final topology equals 125 Nm. The next topology 
generation has been performed for a structure under both self-
weight load and additional concentrated load which equals 
100% of the self-weight. The final topology is presented in 
Figure 3. The resulting compliance equals 9536 Nm while the 
compliance of final topology obtained by ANSYS topology 
optimization procedure for the same structure equals 9635 Nm.  

 

 

Figure 1: Initial structure. Loading and supports 

 

 

 
Figure 2: Final topology. No applied load, only self-weight 

5. Concluding remarks 

This paper presents application of heuristic method based on 
Cellular Automata concept to topology optimization of 
structures including self-weight loading. Obtained results 
validated by ANSYS topology optimization procedure 
demonstrate the efficiency and effectivness of the proposed 
approach. By adapting the modified element density update 
model so called parasitic effect has been avoided. Finally, one 

can observe that the obtained topologies are free from 
intermediate densities, so-called grey areas, without using any 
additional filtering. 
 

 

 
Figure 3: Final topology. P = 627.84 N, self-weight included 

For comparison, the calculations for a concentrated external 
force without self-weight loading were performed and the final 
topology is presented in Figure 4. 
 

 

 
Figure 4: Final topology. P = 627.84 N, no self-weight 
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