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Abstract

In the paper the soft tissue freezing processiisidered. The tissue sub-domain is subjected tadtien of cylindrical cryoprobe.
Thermal processes proceeding in the domain coresidere described using the dual-phase lag equddBhE) supplemented by
the appropriate boundary and initial conditions LBResults from the generalization of the Fouraw in which two lag times are
introduced (relaxation and thermalization timesheTaim of research is the identification of theseameters on the basis of
measured cooling curves at the set of points sldntthe tissue domain. To solve the problem tldudionary alghoritms are used.
The paper contains the mathematical model of thsudi freezing process, the very short informationcerning the numerical

solution of the basic problem, the descriptionthef inverse problem solution and the results offuatiations

Keywords: tissue freezing, dual-phase lag modelrgevproblem, evolutionary algorithms, numerical nogts

1. Introduction

The typical tissue freezing model is based on teenes
equation (e.g. [1, 2]) in which the parameter chesubstitute
thermal capacity is introduced [3, 4]. Recently, buer,
prevails the view that a better approximation o firocesses
proceeding in the domain of the heated or coolégtissue are
the models using the Cattaneo-Vernotte equationofsthe
dual- phase lag equation [4, 6]. It results from specific inner
structure of the material considered.

The DPLE contains the second derivativef temperature
with respect to time and also the mixed derivabe¢h in time

and space The typical boundary conditions given on the oute

surface of the system have also the another foram tine
classical ones. As mentioned, the equation disdussatains
two additional parameters this means lag times andtr
(relaxation and thermalization times).

2. Governing equations

The dual-phase lag equation results frongtreeralized form
of the Fourier lavg (x, t) =—X OT (x, t), this means

q(x, t+1,) ==-A0T(X t+1;) (2)

whereq is a heat flux vector\ is a thermal conductivityx, t
denote the geometrical co-oridinates and time.

After not very complex mathematical manipulatiome @btains
the diffusion equation in the form
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To take into account the tissue freezing process thwherec is a volumetric specific heaQ (x, t) is a capacity of

approach called the one domain method (e.g. [3,c4l be
applied. The evolution of the freezing latent hisadetermined
by the substitute thermal capacity. It turned that the same
parameter can be introduced to the dual-phasejiagtien (see:
next Chapter).

At the stage of humerical modeling of the basidprm the
finite difference method has been used. In padicuhe 1D
problem for the domain oriented in the cylindricalordinate
system has been considered (it results from thererpntal
data available in the literature [7] and concernthg tissue
freezing exposed to the cylindrical cryoprobe agtio

The inverse problem consisting in the determinifidag
times was solved using the evolutionary algorittieng. [8]).

In the final part the results of computations stnewn and
the conclusions are formulated.

internal heat sources, in particular
Q9= w(Mal T~ T+ T+ Eeoxd ©)

wherewg (T) [kg/(m® s)] is the blood perfusion rateg is the
specific heat of bloodTz is the arterial blood temperature,
Qm (T) is the metabolic heat sourdejs a freezing latent heat,
fs is a frozen state fraction at the neighborhoodhef point
considered. A form of perfusion heat source resinimm the
assumption that the soft tissue is supplied bybigenumber of
capillary blood vessels uniformly distributed iretfissue domain.
The local capacity of heat source connected with fteezing
process is proportional to the local freezing fdielt should be
pointed out that the blood perfusion rate and te¢abolic heat
source are equal to zero for the frozen regibnTy,), while for
the intermediate one the linear changes startiogn fihe point
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T=T; (corresponding to the natural state of tissue}aien into
account.

The internal heat source connected with the fngegrocess
can be transformed to the form

of(x,1) df(T)aT(x 1)
f)=L-2 =L—3
Q(xH=L775 aT ot
If the course of the functiorfs (x, t) in the intermediate region
is assumed to be a linear one

T-T(x9

4

fo(x,t) = 5
s = ©)
then in the equation (2) in the placecdhe parameter
df(T) L
C=c¢c-L——’=c¢+ , T4O| T, 6
S A [T. 1] Q)

called a substitute thermal capacity appears. Additly the
last term in equation (3) and its derivativ@Q. (X t,)/0t

disapears. In equation (63 is the volumetric specific heat of
intermediate sub-region. Finally, in equation 3 parameter
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Figure 2: Inverse problem solution using evolutigrelgorithm

Thermophysical parameters of tissue are taken f@mThe

radius of croprobe tip equals 4 mm. The cryoprebsuiround-
ed by the tissue with the radius 0.1 m (this lagige is intended
to provide the correctness of assumption concerring

adiabatic conditions on the lateral surface ofdbmain).

Table 1: Evolutionary algorithm parameters

C has a form of the piece-wise constant functione $hmilar
course of the thermal conductivity is also assumed.

On the contact surface between cryoprobe tip and sk

tissue the Dirichlet condition (Fig. 1) is givenhile on the

external part of the cylindrical domain the adiabdtoundary

condition is taken into account. Additionally, fior O the initial

tissue temperature and the initial cooling rateka@vn.
At the stage of numerical computations the authoria

No of generatior 30
Number of chromosom 1C
Prob. of uniform muation 20%
Prob. of nonuniform mutatic 30%
Prob. of arithmeticrossove  50%
Prob. of clonin 10%

program basing on the explicit scheme of the FDMabdally-
symmetrical domains has been used.

3. Inverseproblem

To solve the inverse problem the least squaresrimit is
applied

M

>Y(v-T)

i=1 f=1

1
S(rq,rT)zﬁ )
where T, and T' =T(>g, tf) are the known temperatures

distribution and estimated temperatures, respeygtivéd is the
number of sensors. The minimum of functional (7} leeen
found using the evolutionary algorithms (e.g. [8f).this paper
the problem of, andty identification is discussed (c.f. eq. (2)).
In Table 1 the evolutionary algorithm parametere ar

collected. In Figure 1 the cooling curves at thenf®located at
different distances from the cryoprobe surface experimental
data are shown, while in Figure 2 the process efftification
using the evolutionary algorithm is presented.
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Figure 1: The cooling curves and experimental data

4. Conclusions

Generally speaking the solution of the inverse [emob
discussed on the basis of the experimental dateetoimg the
local and temporary temperatures in the tissue @oimsaquite
satisfactory.
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