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Abstract

In the paper, the extended finite element method (XFEM) is combined with a heat flux recovery procedure in the analysis of a steady-
state heat conduction problem with discontinuous terms. Computationally efficient low-order finite elements provided good conver-
gence are used. The combination of the XFEM with a recovery procedure allows for quadratic convergence rates in heat flux solutions
i.e. as the same order as temperature solution. The discontinuity is modelled independently of the finite element mesh using a novel
extended enrichment functions in the finite element approximation. The results show improved heat flux prediction locally for the
interface element and globally for the entire domain.
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1. Introduction

The aim of the paper is to reach enhanced heat flux predic-
tions, as part of the solution of the Poisson equation which rep-
resents the mathematical model of the problem. During the last
decades much effort was paid to explore a stress improvement
procedures for solid and structures and to establish solution error
estimates, [3], [1]. Recently an effective technique has been pro-
posed in [4]. In the case of discontinuous problems the XFEM ap-
proximation can recover the discontinuity of the solution locally
using enriched approximation, [2]. The XFEM solution introduce
the discontinuity through nodal enrichment function, and controls
it by additional degrees of freedom. This allows to make the finite
element mesh independent of discontinuity location. The quality
of the solution depends mainly on the assumed enrichment ba-
sis functions. In order to achieve better approximation, the new
enrichment functions are proposed.

If an effective procedure to improve the solution is estab-
lished, a coarse mesh with low-order elements can be used in
the finite element analysis. In a study, we asses the effectiveness
of the proposed approach using L2 and energy norms.

2. Governing equations

Let us consider a domain Ω with boundary Γ divided into the
sub-domains ΩS and ΩL. The sub-domains are separated from
each other by the interface ΓI . The boundary Γ is composed of
the sets ΓD and ΓN such that Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅.
The normal vector n on the external boundary Γ and the outward
normal vector nI , on the interface ΓI are defined.

The evaluation of temperature T (x) in Ω is governed by the
Poisson equation

5q(x) + f(x) = 0 in Ω (1)

where

q(x) = −k5 T (x) (2)

and k is the thermal conductivity and f denotes a heat source.
The boundary conditions define the temperature at the bound-

ary ΓD

T (x) = TD(x) at ΓD (3)

and the heat flux at ΓN

−k5 T (x) · n = qS(x) at ΓN . (4)

It is assumed that the coefficient k and the function f are discon-
tinuous across the interface boundary ΓI .

The finite element equation is obtained from the weak form
of the problem

K(e)u(e) = f (e) − q
(e)
S (5)

where u(e) is a vector of nodal unknowns, and K(e), f (e) and
q
(e)
S are the stiffness matrix, load vector and externally applied

heat flux, respectively. Their global counterparts are computed
through the usual assembly procedure.

3. XFEM and recovery procedure

The finite element method uses continuous approximation
within individual element. Thus, it can only be applied to solve
the discontinuous problems by aligning the mesh with discon-
tinuity. The XFEM is suitable for describing discontinuities in
the solution fields independent of the finite element mesh. It is
essential, however, to locally apply special approximation func-
tions. The enrichment area is contained to the vicinity of a dis-
continuity; as a result, the size of the problem remains relatively
unchanged.

A solution characteristic of the problem is introduced by
adding the enrichment term T (x,xI)E to the standard finite ele-
ment approximation T (x)C

Th(x) = T (x)C + T (x,xI)E (6)

where

T (x)C =
∑
j∈I

Nj(x)Tj (7)
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The enrichment term T (x,xI)E combines the enrichment func-
tions Ψα(x,xI) with a partition of unity (PU) functions N(x)
(usually element shape functions)

T (x,xI)E =
∑
j∈J

m∑
α=1

Nj(x)Ψα(x,xI)a
α
j (8)

where J is the set of nodes enriched by Ψα(x,xI), aαj are the
additional degrees of freedom, I is the set of all nodes and m is
the number of enrichment functions and xI denotes that a term
depends on the interface position.

Then, we use equation (5) to obtain unknown coefficients of
approximation T and a gathered in vector u. Finally, the heat
flux in an element is calculated using equations (6-8) and (2).

Now, we briefly present the recovery procedure proposed in
[4]. The procedure is applied to all elements with continuous ap-
proximation. It is assumed that the approximation in enriched
elements allows for quadratic convergence in heat flux.

The temperature pattern within each element with continuous
approximation is represented by equation (7). With this assump-
tion, the heat flux q

(e)
h (x) of element e follows from equation

(2). We refer to this heat flux as the directly calculated finite ele-
ment heat flux. It is well known, that for the low order elements
(2-node element in 1D, 3-node element in 2D, etc.) the quality of
calculated heat flux is poor as compared to the calculated temper-
ature field.

In the presented formulation, the accurate heat flux predic-
tion is obtained using a mixed interpolation approach. In this
approach, the Lagrange multiplier technique is utilised in order
to apply physical relationship (2) over the element volumes. The
additional solution variable are then the heat flux coefficients q(e)

and Lagrange multipliers λ(e), which are defined by internal de-
grees of freedom. They are related only to the considered ele-
ment e. An important feature of the mixed formulation is that
the temperature problem is decoupled from the calculation of the
enhanced heat flux q(e)(x).

In order to deliver improved heat flux prediction a richer
space for q(e)(x) must be assumed than that assumed for
q
(e)
h (x). The interpolating functions used in the calculation are

those proposed in [4].

4. 1D solution

In this section, we test the procedure for 1D discontinuous
problem in Ω = 〈0, 1〉 and arbitrary loading and material proper-
ties. The boundary ΓI is defined by a single point xI = 0.6667.
It is assumed that the cross section area of the 1D structure is con-
stant. Let us consider the equation (1) with the following terms

k =

{
kL = 0.1 for x < xI
kS = 1 for x > xI

(9)

and the homogeneous Dirichlet boundary conditions

T (x = 0) = T (x = 1) = 0 (10)

The forcing term is assumed to be a smooth function in the form

f(x) = 10sin
(

2πx

xI

)
. (11)

The finite elements with discontinuous approximation are
enriched with the set of two functions. The common abs-
enrichment with shifted-basis approximation is combined with
a tested quadratic function

Ψ1
j (x) = |x− xI | − |xj − xI |

Ψ2
j (x) = |x− xI |g(x)− |xj − xI |

(12)

where

g(x) =

{
N1(x) if x < xI
N2(x) if x > xI

(13)

It is assumed that the considered enrichment functions allows for
a better prediction of the heat flux in reproducing elements in
comparison to the standard abs-enrichment.

Figure 1 shows the heat flux convergence curves for the 1D
problem measured in the H1 norm and the convergence of the
temperature results measured in the sense of L2 norm.
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Figure 1: Convergence curves for the 1D problem.

Considering the results we see, that the rate of convergence
for the temperature T (x) is O(h2) whereas the enhanced heat
flux q(x) converges even faster, reaching O(h2.45) in the H1

norm. Further, the solution for the heat flux is much more ac-
curate then directly given by temperature.
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