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Abstract 
 

Free-form design (FFD) became recently a new paradigm of architectural style. Freedom in the design results in a situation when 
created forms are not always rational from the viewpoint of design logic. One of the basic issues, especially in the case of glazed 
grids, is the ability to divide the designed surface into a grid composed of planar panels. Most frequently, FFD implementations are 
forms based on triangulated grids. This type of topology is easy to achieve, since any three points lying on any surface also lie on the 
same plane. In contrast, obtaining quadrilateral topologies which preserve planarity of panels is much more difficult, and their base 
surfaces must meet a number of constraints. However, the quadrilateral topology has many advantages over the triangular one, both 
for implementation and aesthetic reasons. In this paper the method of forming quadrilateral planar grids on surfaces with two-way 
curvature is proposed and discussed. The advantages of this method are the ability to transform a grid to adapt it to the requirements 
of architectural form and its optimization due to deformation. 
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1. Comparison of triangular and quadrilateral topologies 

The glazed planar grids based on doubly curved surfaces 
differ in many respects depending on whether their topology is 
triangular or quadrangular. Triangular grids are much easier to 
design and virtually every surface can be triangulated. This fact, 
rather than any advantages in performance, is the reason why 
structures with such a topology are much more often designed 
and constructed. For any free-formed surface, arbitrarily 
selected three points lying on it also lie on the same plane. This 
means that any arbitrarily selected three points creates a flat 
panel. To maintain planarity of panels defined by four points 
lying on the surface of the shell, these points have to meet 
additional conditions which, to some extent limit the freedom of 
shaping the base surface. The use of quadrilateral grids, 
however, has a strong practical justification. In the case of 
glazed lattice shells quadrilateral panels significantly facilitate 
construction. This is due to the reduction of glass losses due to 
the cutting of the panels and easier workmanship. In the 
triangular grids nodes usually connect 6 rods, while in 
quadrilateral grids nodes are 4-valent. For this reason, the latter 
connections are much simpler in design and fabrication. As a 
result, the average number of rods in the quadrilateral grids is 
about fifty percent smaller than in triangular grids. This 
facilitates the proper fabrication of edge profiles, and thus 
reduction of thermal bridges and places of potential leaks [3]. 

2. Construction of constrained quadrilateral lattice shells 

2.1. Construction of the profile curve 

Because of the need to ensure coplanarity of quadrilateral 
panel vertices, the procedure of shaping the base surface is 
subject to certain constrains. One possibility to meet these 
limitations is to use a translational surface created by translating 

the generatrix curve along the directrix curve [1]. In the case 
where the structure contour is rectangular, the profiles of both 
curves must be of the same shape and be constructed in 
accordance with the rules given below. In Fig. 3, the bold 
diagonal contour marks the intersection of the generated surface 
and the base plane. Part of the surface outside the contour is 
discarded. The profile curves must consist of four identical 
parts. The half of the profile curve is shown in Fig. 1. The basic 
part of the profile curve, C1, which is its quarter, is not subject 
to constrains. Here, for example, the shape parameter is the 
location of the control point Pe. By manipulating it, the shape of 
the final lattice shell can be changed, Fig. 2. The second quarter 
of the profile, C2, is formed by rotating the C1 curve around the 
center at x = L/2 and y = H/2, by the angle 180°. The remaining 
part of the profile is constructed by the mirror symmetry with 
respect to the axis X = L. 

 

 
 

Figure 1: Half of the profile curve 

 
 

Figure 2: Exemplary profile curve variations 

2.2. Lattice network generation 

The selection of vertices on the base surface is carried out in 
such a way that the vertices defining each panel lie both on this 
surface and on a certain common plane. Coordinates of vertices 
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result from the intersection of two profile curves: v = v(G,D) 
(generatrix G, and directrix D) then: 

 
v1 = v(G1, D1) v3 = v(G2, D2) 
v2 = v(G1, D2) v4 = v(G2, D1) 

 
Vertices v1, v2, v3, v4 create a planar face (Fig. 3). 

 
Figure 3: Network of profile curves generating planar panels, 
bold diagonal outline is the base plane of the lattice shell 

2.3. Transformations of lattice shell 

A grid with planar panels and square base was generated by 
the procedures described above. It is the basic form for 
generating lattice shells based on other shapes. For this purpose, 
it is necessary to use appropriate transformations which adapt 
the originally generated grid to the altered base shape while 
maintaining planarity of grid panels. Any linear transformations 
such as translation, rotation, scaling in any direction and 
combinations thereof are allowed. Scaling along the Z axis 
determines the height of the lattice shell and is also an 
optimization parameter for the structure. The grid can be 
inscribed into any quadrilateral base contour, by means of 
nonlinear transformations, the three examples of which are 
shown in Fig. 4. The final allowed transformation is “bending”, 
which allows the two sides of the quadrilateral base to be 
converted into curves, Fig. 5. 

 
Figure 4: Three types of non-linear transformations preserving 
planarity of faces 

   
Figure 5: “Bent” network with planar panels 

2.4. Composed lattice shells on irregular layouts 

Further possibilities of grid shaping  are due to the 
possibility of combining several transformed lattice shells by 
welding them in such a way that the continuity G0 is 
maintained. An example is shown in Fig. 6. 

 
Figur 6: Lattice shell composed of three bent parts welded 
continuously 

3. Initial rating of mechanical performance of various 
lattice shell grids 

Initial structural efficiency evaluation of the generated 
lattice shell was carried out by means of FEM software 
Karamba [2]. The computational model assumed plane 
dimensions A×B = 14.14×14.14 m, the length of each rod in 
plane – 1.00 m and its cross section  – aluminium RHS 
100×50×4 mm. The self-weight of the grid was assumed as the 
loading. The analyses compared, for different combinations of 
parameters, the values of: average and max nodal displacement, 
max axial forces, max bending moments and max shear forces 
in the lattice shell. Table 1 presents the maximum grid node 
displacement values for H = 2.50 m and for various 
combinations of profile curve parameters a and b. These values 
are selected from the full set of results as the most 
characteristic. 

Table 1: Max displacements of nodes [mm] for H = 2.50 m 

 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 
0.00 1.71 1.08 1.28 1.58 2.01 2.60 3.40 4.41 
0.05 2.86 2.02 1.31 1.12 1.36 1.71 2.21 2.90 
0.10 4.50 3.43 2.47 1.66 1.14 1.24 1.49 1.89 
0.15 6.81 5.42 4.20 3.10 2.15 1.42 1.33 1.45 
0.20 9.99 8.30 6.69 5.21 3.94 2.83 1.96 1.57 
0.25 14.03 12.05 10.13 8.30 6.58 5.05 3.73 2.68 

 

 
 

Figure 7: Graph of grid displacements for the case presented in 
Table 1. The more vivid rod colour means greater displacement 

4. Concluding remarks 

The presented planar quadrilateral lattice shell shaping 
method allows the deformation and optimization of architectural 
objects of various use, while maintaining the rationality of 
designed free-forms. 
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