
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

Equilibrium paths analysis of materials with rheological properties using the chaos theory
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Abstract

The numerical equilibrium path analysis of the material with random rheological properties using standard procedures and specialist
computer software has not been successful. The proper solution for the analysed material heuristic model was obtained on the base of
the chaos theory elements and neural networks. The paper deals with mathematical reasons of the unsuccessful use of the computer
software. The properties of the attractor used in analysis were also elaborated. It presents the results of conducted numerical analysis
both in numerical and in graphical form for the used procedures.
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1. Introduction

Construction materials widely used in civil engineering struc-
tures i.e.: plastics, steel in high service temperature T > 200◦C,
soil, etc. are characterised by some rheological properties like
creeping and relaxation. After performing experimental creep
and stress–relaxation test, data fitting to appropriate viscoelastic
material model must be necessarily performed.

2. Numerical experiment data

Table 1: Rheological testing results for material parameters:
{G1, G2, η1, η2} = {10, 2, 5, 1} · 103 and model ref. (Fig. 1)

time creep test stress–relaxation test
t [s] γ(t) τ(t)

0.0625 0.00003448388 4500.597
0.125 0.00006361715 4451.076
0.25 0.0001092349 4366.245
0.5 0.0001665065 4241.443
1. 0.0002161763 4104.931
2. 0.000242199 4019.819
4. 0.0002494235 4000.707
8. 0.0002499966 4000.001
16. 0.00025 4000.

Authors numerically obtained results for known viscoelas-
tic material model presented in the Fig. 1. Creep and stress–
relaxation tests were performed, results are given in the Tab. 1.

Figure 1: Rheological model of material

3. Fitting parameters of rheological material model

For material model presented in the Fig. 1 the formulas of
compatibility for the material parameters Gi and ηi were calcu-
lated symbolically using the Laplace transform method [5, 6].
Having performed the rheological tests, basing on their results
and symbolical math formulas, authors tried to perform reverse
data fitting using residual methods.

Data fitting for stress–relaxation test has failed. Alerts indi-
cate that decreasing iteration step of the parameters do not cause
decreasing of the gradient (in a manner of the derivative of the
trial function). In consequence such situation had to alter solu-
tion convergence deficiency. To confirm that ascertainment the
differentiation of function τ(G1, G2, η1, η2, t) parameters has
been carried out. For certain parameters: {G1, G2, η1, η2, t} =
{G1, 1, 1, 1, 1} the trajectories of obtained derivatives have been
analysed.

lim
G1→−∞

d τ(G1, G2, η1, η2, t)

dG1
=∞

In such case basic requirements of curve fitting methods based on
residuals are not fulfilled.

Consequently to confirm the correctness of the rheological
model of material it was decided to conduct the relaxation test pa-
rameters fitting using genetic algorithm method. Authors imple-
mented genetic curve fitting algorithm based on principles given
in [3]. Least squares method was taken as a fit quality criteria.
The following parameters of GA were used:

Table 2: Genetic algorithm parameters

parameter value
population size 128

number of unknowns 4
maximum generation 600
crossover probability 0.70
mutation probability 0.01

scaling 2.0
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The genetic algorithm with parameters included in the Tab. 2
was used as a data fitting method for stress–relaxation test results.
At the first step the range of parameters variabilities (the space of
analysis) was determined as:

{G1} ÷ {1E4± 500}, {G2, η1, η2} ÷ {2E3, 5E3, 1E3} ± 100

After averaging results from multiple algorithm execution (re-
sults from each exec. are equally probable) method character-
izes with very fast convergence to material parameters referred in
the Tab. 1.

Taking under consideration necessarity of using functions ob-
tained from the Laplace transform method [5], it appears that in
real life material testing it is very difficult to find appropriate rhe-
ological material model based on elastic and viscous elements.
As an alternative, authors proposed using so called Rządkowski’s
attractor [4] in coincidence with neural network curve fitting al-
gorithm.

4. Material model analysis using the chaos theory

In the chaos theory the simplest way of the equilibrium paths
approximation is to apply the so-called Rządkowski’s attractor
[4]. The attractor is a stable set of lines approached by all trajec-
tories of the exponential functions describing the relationships.

δ = f(Q) = α ·Qα−1 (1)

In the Eq. (1) Q is a generalised load and δ is a gen-
eralised deformation of structure built from materials with
elastic, plastic, viscous or brittle features. The normal-
ized base graphic form of the attractor is presented in
the Fig. 2 where α is the so called driving parameter.

Figure 2: Normalized base form of the Rządkowski’s attractor

The base attractor branch, corresponding to the values of the
steering parameter 1 < α < 2 is mapping the equilibrium paths’
trajectories of the elastic and elastic-plastic structures with ma-
terial and geometric non-linearity. The attractor branch, corre-
sponding to the values of the steering parameter 0 < α < 1,
maps the equilibrium paths’ trajectories of a structures for the
rheological phenomena connected with creeping. For the values
of the steering parameter α = 1 the attractor branch is map-
ping the equilibrium path α = 2 trajectory of the ideal elastic-
plastic Prandtl’s material, for α = 1 is mapping an ideally elastic
material model, however for α > 2 is mapping the phenomena
analogical to rheopexy. The attractor point determined with the
coordinates {Q = 1, δ = 1} can be regarded as a criterion for

the limit state of the structure. In the event of a complicated form
of the equilibrium path, the exponent α can be presented in the
form of a function, and instead of the multiplier α the multiplier
β (directional coefficient) can be entered:

δ = β ·Qf(α)−1 (2)

The function (2) can also be used transformed by relatedness
to the form given by Eq. (3).

δ = β ·Qbec (3)

The results of creeping test conducted using the proposed
algorithm based on the Rządkowski attractor and curve fit-
ting algorithm based on neural networks according to [1]
were coincided with very high accuracy with the results ob-
tained by using the tests of compatibility. The result of
stress–relaxation approximation is presented in the Fig. 3.

Figure 3: Graph of the stress–relaxation test for parameters
{G1, G2, η1, η2} given in Tab. 1

5. Conclusions

In equilibrium path analysis of the materials’ properties the
conjunction of presented attractor and neural networks gives
much better results, than using polynomial function [2]. Obtained
solutions are always unequivocal and there is no necessity for ad-
ditional interpretation of obtained numerical results especially in
estimation of material parameters dependent on time t like the
value of deformations δ(t) or displacements ∆(t). This concerns
both the viscoelastic and elastic-plastic materials as well as struc-
tures built from these materials.
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