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Problem of FGM TBC coated cylinder
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Abstract

This paper demonstrates the influence of several approximations of FGM thermal barrier coatings on the temperature and stress distri-
butions. It is shown that the conventional approximations by specific power or exponential functions reflect FGM distributions coming
from neither theory nor practise. As example, a thick-walled cylinder including FGM interface subjected thermo-mechanical loading
is considered. Two independent formulations of the uncoupled thermo-elastic problem based on the displacement or stress function are
tested.
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1. Introduction

Functionally graded materials (FGMs) provide thermal insu-
lation and mechanical toughness at high temperature by varying
the composition of thermal conductivity coefficient, thermal ex-
pansion coefficient and Young’s modulus from high temperature
side to low temperature side continuously and simultaneously
by removing the discontinuity of layered structures. Numerous
analytical solutions of thermo-elastic plane or three-dimensional
problems of FGMs take advantage of specific power or exponen-
tial function approximation methods of multi-layered composite
structures (cf. Batra [1]). Hence, question how to model real gra-
dation of thermo-mechanical properties seems to be important.

2. General formulation of FGM thermo-elastic cylinder

A thermo-elastic rotationally-symmetric cylinder including
FGM interface is considered. The cylinder is established a tem-
perature fieldT + θ(r), whereT in the temperature of the solid
corresponding to zero stress and strain, as well as internalpres-
surep (see Fig. 1).
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Figure 1: Three-layer cylinder under thermo-mechanical loading

The system of equations of uncoupled thermo-elasticity ex-
pressed in displacements is as follows
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or alternatively by stress function formulation
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where formats of constantsA and B depend on plane strain
state type according to following scheme: in case of plane
strain state imposed on both mechanical and thermal deforma-
tion A = 1 + ν, B = 1 , whereas in case of plane strain state
imposed on thermal deformation onlyA = 1, B = 1

1+ν .
Stress components as well as heat flux are expressed by conven-
tional relations
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3. Modeling of FGM interface

All thermo-mechanical properties of the FGM interface such
asα, λ andE are arbitrary functions of radiusr. Following five
approximations are considered (see Fig. 2): benchmark problem
of a ceramic layer deposed directly on metallic substrate

f1(r) = fc (4)

conventional power function of interface

f2(r) = (fm − fc)
rn

rnf − rn1
where n =

log(fm/fc)

log(rf/r1)
(5)

linear function interface

f3(r) = (fm − fc)
r − r1
rf − r1

+ fc (6)

tangent hyperbolic (one step smooth) function of interface(cf.
Ganczarski and Szubartowski [2])

f4(r) =
fm + fc

2
+

fm − fc
2

tanh(ar + b) (7)
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multiple tangent hyperbolic (multi-step smooth) functionof in-
terface

f5(r) =
fm + fc

2
+

fm − fc
2

n=4
∑

i=1

tanh(air + bi) (8)

wherefi(r) stand for respective propertyα(r), λ(r) orE(r), in-
dices "c" and "m" refer to ceramic or metallic materials, parame-
tersai andbi define location and thickness of interface sub-layer.
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Figure 2: Distributions of thermal conductivityλ(r) and Young’s
ModulusE(r)

4. Example

A system of four first-order ordinary differential equations
corresponding to (1) or (2) is numerically integrated fromr1 =
0.5 cm tor2 = 1.0 cm by use of shootf.for routine, being shoot-
ing to a fitting pointrf = 0.7 cm implementation of multidimen-
sional, globally convergent Newton-Raphson method (cf. Press et
al. [3]). Thermo-mechanical boundary and continuity conditions
are assumed as follows:

θ(r1) = θ1, qc(rf) = qm(rf), θ(r2) = θ2
σrc(r1) = −p, σrc(rf) = σrm(rf), σrm(r2) = 0

(9)

wherep = 0.55 kN/cm2, θ1 = 25◦C andθ2 = 0◦C. Complete
material data of both materials constituents of FGM, after Wang
et al. [4], are presented in Table 1.

Table 1: Selected properties of constituents of FGM after Wang
et al. [4]

Constituent E ν λ α · 10−6

[MN/cm2] [–] [W/cmK] [1/K]
Al substrate 7.3 0.3 1.54 23

Al2O3 coating 38 – 0.46 8.5

Temperature distributions corresponding to all five types of inter-
face, described by Eqs (4-8), are shown in Fig. 3. In comparison
with the temperature obtained for the benchmark problem (ce-
ramic layer deposed directly over the metallic substrate),the
temperature fields referring to subsequent types of interface rep-
resent smooth and monotonously decreasing functions, thatare
located rather close each to other although corresponding dis-
tributions of thermal conductivity essentially differ (see Fig. 2).
This is a consequence of both Dirichlet’s type of boundary condi-
tions imposed on temperature Eq. (91) and simultaneously term
λ′/λ, which is directly responsible for thermal inhomogeneity in
Fourier’s equation.

Solution of mechanical problem is illustrated by distribution
of hoop stress, which is the dominant component of stress, in
Fig. 4. Analogously to the temperature, in case of the benchmark

problem, hoop stress exhibits strong discontinuity mainlycaused
by thermo-mechanical mismatchEc ≫ Em, αc ≪ αm. This
inconvenient effect is successively eliminated by application of
subsequent types of interface. Nevertheless, another inconvenient
effect of tensile stress zone in ceramic layer occurs.
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Figure 3: Distributions of temperatureT (r)

As a consequence, a ceramic material of very low tensile
strength is unable to carry tensile stress unless there exists resid-
ual stress in material/structure which is big enough to neutralize
tensile hoop stress.
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Figure 4: Distributions of hoop stressσϕ(r)
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