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Problem of FGM TBC coated cylinder
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Abstract

This paper demonstrates the influence of several approxinsabf FGM thermal barrier coatings on the temperature tnreds distri-
butions. It is shown that the conventional approximationsiecific power or exponential functions reflect FGM disttibns coming
from neither theory nor practise. As example, a thick-wehttglinder including FGM interface subjected thermo-mettal loading
is considered. Two independent formulations of the uncmlithermo-elastic problem based on the displacement asdtraction are
tested.
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1. Introduction The system of equations of uncoupled thermo-elasticity ex-
pressed in displacements is as follows
Functionally graded materials (FGMs) provide thermal insu I AN L B 1\ u_ A (Eab)
lation and mechanical toughness at high temperature byngary “ T{rT f) u (kv E ?) T 1w
the composition of thermal conductivity coefficient, thatrex- 0" + AT’ + 1) 0 =0
pansion coefficient and Young’'s modulus from high tempeeatu "
side to low temperature side continuously and simultarigous or alternatively by stress function formulation
by removing the discontinuity of layered structures. Nuboer . 1B\ v B 1\F_ BE ,
analytical solutions of thermo-elastic plane or three-atisional r (‘ - f) F (17u E T ?) T =1, (ab)
probleme of FGMs _take_advantage of specif_ic power or exponen-¢” . (AT/ + %) 0 =0
tial function approximation methods of multi-layered carsjte
structures (cf. Batra [1]). Hence, question how to moddiges  where formats of constantd and B depend on plane strain
dation of thermo-mechanical properties seems to be importa  state type according to following scheme: in case of plane
strain state imposed on both mechanical and thermal deforma
2. General formulation of FGM ther mo-elastic cylinder tion A=1+v, B=1 ,whereasincase of plane strain state
imposed on thermal deformation onlyA =1, B = ——
A thermo-elastic rotationally-symmetric cylinder inclng ~ Stress components as well as heat flux are expressed by eonven

FGM interface is considered. The cylinder is establisheehat tional relations

perature fieldl” + 0(r), whereT in the temperature of the solid o = Fy—gy [(1 —v)u/ + v — Aaf] = T
corresponding to zero stress and strain, as well as intpreat o 1) V)% v’ — Aaf] = F' 3)
surep (see Fig. 1). "
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! 3. Modding of FGM interface

All thermo-mechanical properties of the FGM interface such
asa, A andE are arbitrary functions of radius Following five

| approximations are considered (see Fig. 2): benchmarkeob
| 0 of a ceramic layer deposed directly on metallic substrate
: ! hur) = fe @
! : conventional power function of interface
3 — _ r" _ 10g(fm/f0)
: r:—> 62 fQ(T) - (fm fC)T?—T’f’ where n = IOg(Tf/T1) (5)
1

\ i ’ linear function interface
£ r—r
. n fa(r) = (fm = fo) o — =+ Je (6)

tangent hyperbolic (one step smooth) function of interféafe
Figure 1: Three-layer cylinder under thermo-mechanicadliog ~ Ganczarski and Szubartowski [2])
flll+fc fm_fc

fa(r) = 2 + 3 tanh(ar + b) @)
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multiple tangent hyperbolic (multi-step smooth) functiohin-
terface

n=4

2_ fe ; tanh(a;r + b;)

):fn)+fc+fm

fs(r 5

®)

wheref;(r) stand for respective property(r), A(r) or E(r), in-
dices "c" and "m" refer to ceramic or metallic materials,grae-
tersa; andb; define location and thickness of interface sub-layer.
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Figure 2: Distributions of thermal conductivigy(r) and Young’s
Modulus E(r)

4. Example

A system of four first-order ordinary differential equatson
corresponding to (1) or (2) is numerically integrated frem=
0.5 cm tore = 1.0 cm by use of shootf.for routine, being shoot-
ing to a fitting pointr; = 0.7 cm implementation of multidimen-
sional, globally convergent Newton-Raphson method (d#sPet
al. [3]). Thermo-mechanical boundary and continuity ctiods
are assumed as follows:

9(7”1) = 91,
UT'C(Tl) = —-p,
wherep = 0.55 kN/cnm?, 6; = 25°C andf, = 0°C. Complete

material data of both materials constituents of FGM, aftang/
et al. [4], are presented in Table 1.

9(7’2) = 92
07'111(7'2) =0

qe(re) = qm(r),
Ur'c(Tf) = U'rm('rf)7

9

Table 1: Selected properties of constituents of FGM aftenyVa

etal. [4]
Constituent E v A a-107°
[MN/em?] [-] [WiemK]  [1/K]
Al substrate 7.3 0.3 1.54 23
Al O3 coating 38 - 0.46 8.5

Temperature distributions corresponding to all five typfeater-
face, described by Eqgs (4-8), are shown in Fig. 3. In comparis

with the temperature obtained for the benchmark problem (ce

ramic layer deposed directly over the metallic substrattes,
temperature fields referring to subsequent types of irgerfap-
resent smooth and monotonously decreasing functionsateat
located rather close each to other although correspondsyg d
tributions of thermal conductivity essentially differ é&s€ig. 2).
This is a consequence of both Dirichlet’s type of boundarydto
tions imposed on temperature Eq; Y@nd simultaneously term
'/, which is directly responsible for thermal inhomogeneity i
Fourier's equation.

Solution of mechanical problem is illustrated by distribat

of hoop stress, which is the dominant component of stress, in

Fig. 4. Analogously to the temperature, in case of the beackm
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problem, hoop stress exhibits strong discontinuity magalysed
by thermo-mechanical mismatdb. > FEn,ac < am. This

inconvenient effect is successively eliminated by apglcaof

subsequent types of interface. Nevertheless, anothemirogent
effect of tensile stress zone in ceramic layer occurs.
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Figure 3: Distributions of temperatufié(r)

As a consequence, a ceramic material of very low tensile
strength is unable to carry tensile stress unless theresegisid-
ual stress in material/structure which is big enough tonadiae
tensile hoop stress.
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Figure 4: Distributions of hoop stress(r)
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