
CMM-2017 – 22
nd

 Computer Methods in Mechanics September 13
th
–16

th
 2017, Lublin, Poland 

*The research was partially financed from the Polish science budget resources as the project 10/040/BKM16/0034.  

Numerical homogenization of inhomogeneous media with imprecise parameters  
 

Witold Beluch
1
 and Marcin Hatłas

2
* 

1Institute of Computational Mechanics and Engineering, Silesian University of Technology 
Konarskiego 18A, 44-100 Gliwice, Poland 

e-mail: witold.beluch@polsl.pl 
2Institute of Computational Mechanics and Engineering, Silesian University of Technology 

Konarskiego 18A, 44-100 Gliwice, Poland 
e-mail: marcin.hatlas@polsl.pl 

 

Abstract 
 

This paper is devoted to the numerical homogenization of porous materials with parameters uncertainty, represented by information 
granularity. The aim of the analysis is to obtain range of homogenized material properties reducing number of necessary homo-
genization calculation comparing with classic attitude. The uncertainties are represented by means of interval numbers. The directed 
interval arithmetic is employed to narrow the results range. Interval finite element method is employed to solve a boundary-value 
problem in micro scale. A numerical example presenting the efficiency of proposed attitude is attached. 
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1. Introduction 

Microscopically inhomogeneous materials, like porous 
materials or composites, are nowadays one of the most 
commonly used engineering materials. Different homoge-
nization methods allow obtaining macroscopically homogenous 
equivalent material [6].  

The certain material properties are usually not possible to 
obtain due to the production uncertainties, e.g.  the manufactu-
ring tolerances. To predict a possible range of material 
properties values, different methods considering various kinds 
of information granularity (interval numbers, fuzzy sets or 
stochastic variables) may be used [1]. In the present paper, an 
interval representation of uncertainties with the direct interval 
arithmetic attitude was employed. 

The aim of the paper was to obtain reliable range of the 
equivalent elastic material properties values of porous material. 
Numerical homogenization was performed to obtain macro-
scopically equivalent properties of the media. The boundary-
value problem was solved by means of the interval finite 
element method (FEM). The results obtained for different FEM 
meshes were compared.    

2. Numerical homogenization  

The homogenization procedure allows obtaining a medium 
macroscopically equivalent to a medium inhomogeneous in a 
micro scale. The numerical homogenization is one of the most 
efficient homogenization methods. It is assumed that the 
material is periodical and a representative volume element 
(RVE) fully represents the structure (global periodicity) or its 
part (local periodicity) [2].  

The separation of scales condition states that the charac-
teristic dimensions of RVE should be significantly larger than 
the characteristic dimensions at micro scale and considerably 
smaller than the macro-scale ones: 

 micro RVE macrol l l   (1) 

The following conditions must also be satisfied for RVE: 

i) the Hill-Mandel condition for the equality of the average 
energy density at a micro scale and the macroscopic energy 
density at the point of macrostructure corresponding to the RVE: 

ij ij ij ij     (2) 

where: ij, ij – micro stress and strain tensors, respectively, V – 

the RVE volume,   – the averaged value of the considered 

field: 
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ii) boundary conditions in the form of uniform traction 
conditions, uniform displacement conditions or periodic 
boundary conditions. 

If the FEM method is applied to solve the boundary-value 
problem in both considered scales, the RVE must be assigned to 
each FEM integration point at the micro scale. 

3. Directed interval arithmetic 

Interval arithmetic is a method for solving problems with 
uncertain parameters [3]. The basis of the interval arithmetic is 
the interval representation of a single number: 

,a a a      (4) 

Mathematical operations can be transferred to the interval 
number allowing to revive interval results. The classical version 

of interval arithmetic assumes that the value of a  is always 

less than or equal to a , so that the interval is always determi-

ned in one direction.  
Directed version allows other possibilities, introducing 

additional markings – functional of direction and functional of 
sign. The form of mathematical operations in the directed inter-
val arithmetic depends on the value of the functionals of the 
interval numbers on which the operations will be performed. 
The main advantage of the directed interval arithmetic upon the 
classical one is that the obtained intervals are much narrower 
[4]. 
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Table 1: Numerical results of the homogenization 

    Homogenized Young’s modulus [GPa] 

  Plate Young’s modulus [GPa]  Case 1   Case 2  
 Uncertainty level Min. value Max. value  Min. value Max. value  Min. value Max. value 

 0.1 % 199.9 200.1  123.0488 123.1933  122.8670 123.0128 
 0.5 % 199.5 200.5  122.7749 123.4973  122.5970 123.3254 
 1% 199.0 201.0  122.4614 123.9052  122.3000 123.7559 
 2% 198.0 202.0  121.9299 124.8111  121.8429 124.7466 
 5% 195.0 205.0  121.1586 128.2461  121.6342 128.7468 

Each endpoint of the interval can be denoted as as
, s{+,–}, 

where s is a binary variable. The variable s may be expressed as 
a product of two binary variables and it is defined as: 

    

    

      

      
 (5) 

An interval may be: proper for a a  , improper if 

a a  and degenerate ( a a  ). 

To solve the interval system of equations of the form: 

A x b   (6) 

different methods, like Rohn's method or combinatorial method, 
may be used [5]. In the present paper, the interval Gaussian 
elimination method was applied. In the first step, the main 

interval matrix A  is decomposed to the product of the lower 

triangular interval matrix L  and the upper interval triangular 

matrix U . In the second step the system of equations of the 

form: 

   A x L U x L U x b         (7) 

is solved by calculating the vector z from: 

L z b   (8) 

and vector x  from: 

U x z   (9) 

4. Numerical example 

A plate of dimensions 10x10 m with centrally placed void 
was considered as representative volume element. The porosity 
of the structure was equal to 0.2.  

The RVE was divided into 360 (case 1) and 483 (case 2) 
linear quadrilateral finite elements (Fig. 1), which resulted in 
systems of 420 and 552 equations, respectively.  

 
a)    b) 

Figure 1: Geometry of RVE and FEM mesh for a) case 1 and b) 
case 2. 

Displacement boundary conditions, with unit displacement 
values, were applied to fulfil the Hill-Mandel condition. 
Young’s modulus of the plate material with mean value equal to 

200 GPa was considered as uncertain parameter. Five different 
levels of uncertainty from the range 0.1÷5% were considered.  

Homogenization problem was solved by means of interval 
FEM method. Interval values were introduced at the finite 
element stiffness matrix creation step. The interval values of the 
nodal reactions at the boundaries of the RVE were obtained as 
the solution of the system of equations.  

Based on them, homogenized material properties were 
calculated. The results of the homogenization are collected in 
Table 1. 

5. Final conclusions 

Application of directed interval arithmetic for systems with 
uncertainties provide more efficient way of homogenization 
comparing to classical interval attitude, which results in very 
wide intervals. The resulting intervals obtained with interval 
MES are slightly higher than the actual values and their 
expansion increases with the increase in the number of 
equations in the solution being solved. On the other hand, 
reducing the number of equations would lead to narrower 
intervals but may reduce the accuracy of the calculated center 
value by insufficient discretization of the RVE. 

The next stage of the research is to examine the influence of 
the use of many uncertain parameters on the homogenization 
results. Furthermore, other types of information granularity 
representation, e.g. fuzzy numbers, will be considered. 
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