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Abstract 

 

Generalization of Perzyna’s type model of viscoplasticity utilizing fractional operator is considered, called fractionalviscoplasticity. 

The main objective of this research is to present selected properties (eg. rate effects, anisotropy of plastic flow) of amodel where 

Riesz- Caputo derivative was introduced instead of integer order derivative. This new approach allows to abandon theadditional 

potential assumption required to achieve a non-associative flow. Model discussed in this paper introduces new materialconstants, for 

instance the order of the fractional flow or the limits of the flow anisotropy. The relation between these parameters andthe plastic 

deformation was illustrated in numerical examples. 
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1. Introduction 

Material modelling is essential for reflecting properties 

andbehaviour of physical objects. Theory of fractional plasticity 

introducesrule of non-associated flow which increases accuracy 

ofmodels of metals, granular materials, concrete, ceramics 

andcomposites [9]. This phenomena poses a challenge for 

classicaltheory that may be solved with fractional flow rule [4], 

[5], [6],[7], [8]. The Caputo derivative, discussed in this paper, 

is definedover an interval in adversity to the classical derivative 

of integerorder [1]. This allow to govern and encode properties 

of a materialfrom a nonlocal neighbourhood in stress space 

which mayyield better results in modelling of continuous body. 

2. Fractional viscoplasticity 

2.1. Perzyna type viscoplasticity 

Concept of viscoplasticity was first presented by Perzyna 

[2]as a generalization of one-dimensional constitutive equation 

forrate-sensitive materials. Rate of viscoplastic strain can be 

formulatedas 

 

𝜀̇𝑝 = Λ𝒑, (1) 

 

where Λ is a scalar multiplier and 𝒑 denotes the second-order 

tensor describing the direction of the plastic flow. In the 

classical approach it is assumed that the direction of plastic flow 

is normal to the yield surface, hence p is equal to 

 

𝒑 =
𝜕𝐹

𝜕𝜎
(‖

𝜕𝐹

𝜕𝜎
‖)

−1
, (2) 

 

where 𝐹 is a plastic potential and 𝜎 is a second-order stress 

tensor. Intensity of the viscoplastic flow in enclosed in the 

definition of multiplier 

 

Λ =  γ〈Φ(𝐹)〉, (3) 

 

where γ is a viscosity parameter, <.> denotes the Macaulay 

brackets and Φ(𝐹) is a overstress function of 𝐹. 

 

2.2. Fractional formulation of plastic flow 

It should be noted that viscoplastic flow is a deviatoric 

type,therefore it does not consider the volume change of the 

material.In order to control the volume in plastic range, once the 

yield criterionis fulfilled, a fractional differentiation of a 

potential can beapplied, namely 

 

𝒑 = 𝐷𝛼𝐹‖𝐷𝛼𝐹‖−1, (4) 

 

where 𝐷𝛼 denotes the fractional differential operator and 

denotes the order of the derivative. The Riesz-Caputo (RC) is 

commonly utilized for mathematical modelling of applied 

problems mainly because it includes initial values that have 

physical interpretations [3]. For the function 𝐹 the following 

holds 
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where a, b, t are so-called terminals, 𝐷𝑡
𝛼

𝑎
𝐶 𝐹 and 𝐷𝑏

𝛼
𝑡
𝐶  denotes left 

and right sided Caputo derivatives and 𝑛 = ⌊𝛼⌋ + 1, where 
⌊. ⌋denotes the floor function. 

3. Implementation 

Numerical investigations presented in this paper were 

carried out in Abaqus for three-dimensional cube - single finite 

element (C3D8R). For the calculations of the strain tensor 

specialized VUMAT procedure was created and integrated with 

Abaqus/Explicit solvers. The onset of plastic deformation was 
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described using the HMH yield criterion. As mentioned before, 

fractional operator introduces new material parameters such as 

order of the derivative 𝛼 and terminals 𝑎𝑖𝑗 and 𝑏𝑖𝑗 defined in a 

six-dimensional stress space. 

4. Results 

In generalized viscoplasticity the relation between the 

second invariant of strain rate tensor and the second invariant of 

stress tensor that can be presented as by analogy to [2] as 

 

√𝐽2 = 𝜅 [1 + (
√𝐼2
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], (6) 

 

where 𝐼2
𝑃 is a second invariant of the strain rate tensor, 𝜅 is a 

shear strength, 𝑇𝑚 and 𝑚 are material constants. One can notice 

that expression in square brackets can acts as a multiplier 

dependent on the strain-rate that may increase the strength of 

the material. This approach can be viewed as an elegant and 

morenatural definition of strain-rate hardening. 

In Fig. 1 the evolution of yield strength of the material for 

𝑚 =  1 but for changing order of fractional gradient 𝛼 is 

presented. It can be noticed that for 𝛼 = 1 classical 

viscoplasticity is obtained. There is a significant agreement 

between Fig. 1 and the figure that can found in [2] (Fig. 3). 

Similar conclusion can be drawn also from analysis Fig. 2 and 

Fig. 4 from [2] - but in this case non-dimensional parameter is 

𝑚 =  2. 

 

Figure 1: Dependence of√𝐽2 on √𝐼2
𝑃 for 𝑚 =  1 

 

 

Figure 2: Dependence of√𝐽2 on √𝐼2
𝑃 for 𝑚 =  2 

5. Conclusions 

Since 𝑚has the same meaning as parameter 𝛿 in Perzyna origi-

nal paper [2], it is presented that the order of the derivative can 

be also used to modify the rate effects in the material. Therefore 

this (fractional) extension, introduces new variable that mayal-

low a better fit to the data obtained from the experiments. 
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