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Abstract 
 

The numerical modelling of a plate structure was performed by the finite element method and one-mode approach based on Koiter’s 
method. The first order approximation of Koiter’s method enables to solve the eigenvalue problem. The second order approximation 
describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of 
buckling. The simulations of the non-linear problem were performed using the Newton–Raphson method. The numerical results were 
then verified in experimental tests using the strain-gauge technique. Detailed calculations were made for short Z-columns made of 
general laminates. The static compression test was performed. The specimens were simply supported on both ends. 
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1. Introduction 

A general laminate has many layers and the arrangement of 
layers is non-symmetric. The main disadvantage of a general 
laminate is that mechanical coupling effects occur. Different 
types of coupling between extension/compression, shearing, 
bending and twisting can take place [4-5]. According to the 
classical laminate theory [2], the constitutive equation can be 
written as: 
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The stiffness matrix [K] defines the relationship between 
section forces/moments and deformation/curvature. The K-
matrix can be divided into three submatrices: extensional (i.e., 
[A]), coupling (i.e., [B]) and bending (i.e., [D]). The elements of 
the A-submatrix denoted as A16 and A26 describe the in-plane 
coupling effects. In this case, an interaction between shearing 
and extension or compression occurs. In contrast, the elements 
of the D-submatrix denoted as D16 and D26 describe the out-
plane coupling effects. Here, one can observe an interaction 
between bending and twisting. 

2. Numerical modelling 

Thin-walled structures can exhibit many different buckling 
modes depending on their length. If a structure is short, local 
buckling takes place. It is the first buckling mode, and the 
corresponding buckling stresses are the lowest. With longer 
columns, coupling buckling may occur if two or more 
eigenvalue loads are nearly identical. Finally, one can 
distinguish global buckling which is typical of long structures. 

The numerical modelling of the buckling behaviour of plate 
structures can be performed using the analytical–numerical 

method (ANM) [3] based on Koiter’s asymptotic method (Fig. 
1a) or finite element method (FEM) (Fig. 1b). Both methods 
allow us to determine the static and dynamic buckling stresses as 
well as the post-buckling equilibrium path of a plate structure 
subjected to various types of loads. The numerical results should 
then be verified in experimental tests performed on real structures 
(Fig. 1c). 

(a) (b) (c)  

Figure 1: Modelling of Z-column buckling: (a) ANM model;  
(b) FEM model; (c) experimental model 

2.1. One-mode approach based on Koiter’s method (ANM) 

In the analytical–numerical method [3], a plate model was 
used for all walls of the structure (Fig. 1a). Using variational 
principles, the differential equations of equilibrium can be 
obtained. The solution of these equations should satisfy the 
initial conditions, the kinematic and static continuity conditions 
at the junctions of adjacent plates, and the boundary conditions. 
If the number of interacting buckling modes is 1, the solution is 
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a one-mode approach (i.e., uncoupled buckling). In this case, 
the differential equation of equilibrium can be written as [3]: 
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where: ζ=w/t is the dimensionless amplitude of the buckling 
mode (w - maximum deflection, t - thickness), Pcr, P, ζ*=w/t are 
the buckling loads, compression loads and dimensionless 
amplitude of the initial deflection corresponding to the buckling 
mode (wo – maximum initial deflection), respectively, b111 is the 
coefficient in the first order approximation, c1111 is the 
coefficient in the second approximation. 

2.2. Finite element method (FEM) 

The numerical simulations were performed with the Abaqus 
system [1]. The FE-model of the analysed column (Fig. 1b) was 
composed of multi-layered shell elements with 8 nodes. The 
elements had six degrees of freedom at each node. The FEM 
analysis involved solving the eigenvalue problem of buckling 
using the Lanczos method. Next, post-buckling paths were 
determined by a nonlinear buckling analysis. The Newton–
Raphson method was employed. 

2.3. Experimental verification 

The experimental studies were conducted using a universal 
testing machine and a special grip made of two identical parts. 
One part consisted of a rigid steel plate and a clamping sleeve. 
The speed of the upper cross beam in the testing machine was 
maintained constant at 1 mm/min. The compressive load and 
strains in the direction of load were measured. The strain gauges 
were located on the opposite sides of the column wall in the 
region of the highest half-wave amplitude determined by FE 
analysis (Fig. 1a). 

3. Results 

All tests were performed on Z-columns under uniform 
shortening. The dimensions of their cross-section are shown in 
Fig. 2. The specimens were simply supported on both ends. 

 

Figure 2: Dimensions of the cross-section in mm 

The stacking sequences of the laminate were: [60,0,-60,60,-
605,(0,-60)3,602,-60]T (i.e., Case 1), [60,0,-602,605,(0,60)2,0,-
602,602]T (i.e., Case 2), [60,02,-602,603,-602,03,-602,0,602]T (i.e., 
Case 3), respectively. The lengths of the specimens were: 
270mm (Cases 1 and 2) and 330mm (Case 3). The amplitude of 
imperfection related to the first buckling mode was equal to 
1/10 of the column wall thickness. The mechanical properties of 
the carbon-epoxy laminate were as follows: Young’s modulus 
in fibre direction (i.e., direction 1) was 170 GPa and in 
transverse direction of the fibers (i.e., direction 2) – 7.6 GPa, 
respectively; Poisson’s ratio in plane 1-2 was 0.36; shear 
modulus in plane 1-2 was 3.52 GPa. 

The first step involved determining buckling loads. A 
numerical analysis was performed to solve the eigenvalue 
problem. The experimental buckling loads were determined by 
the following methods: vertical tangent method (P1), averaged 
strain method (P2), P-w method (P3), P-w2 method (P4), 
inflection point method (P5) and Koiter’s method (P6). Since 
the effect of bifurcation does not occur in the experimental tests, 

it was possible to determine the approximate buckling load. 
Details are given in Table 1. The second step consisted in 
performing a post-buckling analysis. In Fig. 3, the numerical 
solutions are compared in dimensionless form. 

Table 1: Buckling loads in N 

(a) (b)  

Figure 3: Post-buckling paths: (a) Cases 1 and 2, (b) Case 3 

4. Conclusions 

The application of the ANM method provides very effective 
solutions for all types of thin-walled structures subjected to 
various types of loads. All static and dynamic buckling analyses 
of thin-walled structures can be conducted with this method. 
Moreover, in contrast to the FEM, the ANM calculations can be 
done much faster and easier, and the results show a satisfactory 
accuracy. Nonetheless, the visualization of results is much 
easier in the FEM. Given that the results obtained with the two 
methods and the experimental findings were similar, it can be 
concluded that the proposed modelling technique yields 
accurate results. The study has revealed that it is only the 
twisting-bending coupling effect that has a significant impact on 
the buckling behaviour of the compressed structures. 
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