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Abstract 

The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green 

function and its derivative should be known for the considered differential operator. Today the interesting groups of materials are 

electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned 

continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem 

of Green’s function determination very difficult. For that reason Green’s functions for the magnetoelectroelastic continuum are not 

known in the closed form and numerical methods should be applied to determine such Green’s functions. These means that the 

problem of the accurate and simply determination of Green’s function derivatives is even harder. Therefore in the present work the 

dual number algebra method is applied to calculate numerically the derivatives of 3D Green’s functions for the magnetoelectroelastic 

materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic 

differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-

known finite difference schemes. In the final version of the paper the numerical examples and the discussion will be given. 
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1. Introduction 

Green’s functions are foundations of several numerical 

methods, especially the boundary element method [3]. 

However, the construction of such functions is difficult for 

modern composite materials [4]. In the paper the magneto-

electro-elastic (MEE) composite materials [1, 5, 8] are 

considered. They exhibit the coupling effects of mechanical and 

electromagnetic fields, namely the piezoelectric, piezomagnetic 

and magnetoelectric phenomena. The anisotropy of the MEE 

materials and the coupling effects do not allow to obtain 3D 

Green’s functions in the closed form. The semi-analytical 

solution is given by line integral form [1, 5]. The integral can be 

evaluated by the standard Gaussian integration method, hence 

the challenge is to calculate the derivatives of the Green 

functions with high accuracy. The finite difference (FD) scheme 

could be adopted to calculate the derivatives of Green’s 

functions; after several numerical tests it can be established the 

appropriate value of the step size, however the value of the 

optimal step-size is problem-dependent. Therefore, in the 

present work the dual number algebra method (DNAM) [6, 7] is 

applied to calculate numerically the derivatives of 3D Green’s 

functions for the MEE materials. The DNAM is practically 

independent on the step size as shown in [7] and it can be 

treated as a special case of the automatic differentiation method. 

These properties make the DNAM an easy-to-implement and 

highly accurate computational method for the numerical 

calculation of first-order derivatives of the real functions given 

by the implicit computational mapping. The presented method 

is characterized by the extremely high accuracy; hence, it could 

be also treated as a tool for validating the well-known FD 

methods, especially for the proper choice of the step size. The 

mentioned feature is important for the case of the MEE 

composite models, for which, in general, analytical solutions are 

not known.  

2. Magnetoelectroelastic linear constitutive model 

The linear constitutive equations of the 

magnetoelectroelastic continuum can be expressed as [1, 2, 3]: 
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where σij and εkl are the elastic stress and strain tensors, 

respectively; Di and El denote the electric displacement and 

electric field vectors; Bi and Hi are the magnetic induction and 

magnetic field vectors; cijkl, κil and μil are the elastic stiffness, 

the dielectric and magnetic permeability tensors. The elastic 

field is coupled to the electric and magnetic fields through the 

piezoelectric eikl and piezomagnetic qikl moduli tensors. The 

electric and magnetic fields are coupled through the 

magnetoelectric ail moduli tensor. To simplify the notation of 

equations, generalized quantities can be introduced [3]. 

In the present formulation, the magnetoelectroelastic 

composite is modeled as homogeneous, transversal isotropic, 

linear elastic, linear piezoelectric, linear piezomagnetic and 

linear magnetoelectric. Other models of the materials can be 

considered as a special cases, e.g. for the pure piezoelectric 

material the piezomagnetic and magnetoelectric effect does not 

occur [8]. The equilibrium equations consist of the mechanical 

equilibrium equation, the Gauss’ law, and the Maxwell equation 

for the quasi-static magnetic field as shown in [1, 2, 3]. To 

associate the mechanical strains and the displacement field, the 

linearized relation of anisotropic elasticity theory is used [1]. 
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3. Integral representation of Green’s function for MEE 

material 

The generalized displacement vector UJK expresses the 

Green function by the following line integral [1, 5]: 
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where r is the distance between the source and the field point 

and ΓJK is the generalized Christoffel tensor [1]. The appropriate 

parameterization of the unit circle |n| = 1 allows to calculate the 

integral (2) as a single integral [5]. Because the integral (2) is 

calculated numerically, the derivative computations is 

performed by the DNAM, which is also the numerical method. 

4. Dual number algebra 

The algebra of dual numbers has been originally proposed 

by Clifford in 1873 [6]. A dual number z is an ordered pair of 

real numbers (x, y) associated with the real unit 1 and the dual 

unit ε, hence [6, 7]: 

εz x y  . (3) 

The representation (3) is called Gaussian representation [7]. It is 

worth to notice, that the dual unit ε is an nilpotent number, 

which means that ε2 = 0 and ε ≠ 0. 
The dual number are elements of the 2-dimensional real 

algebra generated by real and dual units [6, 7]: 

        2 2D ε ε | , , ε 0 ε 0z x y x y        . (4) 

Basic operation in the dual number algebra are defined by [6]: 
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The special feature of the dual number algebra is an existence of 

the numbers εy, y ∈ ℝ, which are called the divisors of zero 

[6, 7]. It is not possible to obtain the inverse element of the 

number εy in the algebra D, given by (4). 

A function F of a dual argument z = x + yε can be 

represented as [6]: 

     , , ,F z f x y g x y   (6) 

where f and g are real functions of real variables x and y. The 

function F(z) is analytic if [6, 7]: 
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Therefore, the expansion of the function F(z) in the Taylor 

series for the dual number argument takes the following form: 
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The properties of the dual unit ε make that the Taylor series is 

exactly truncated on the first order term, because for nilpotent 

numbers εn = 0, for n > 1. 

Taking the dual part of the both sides of the equation (8), it 

is possible to calculate the derivative of the function F(∙) as: 
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where the operator Dual[∙] extracts the dual part of the dual 

number. If y = 1, then the dual algebra method for calculating 

the derivative of real functions is equivalent to the automatic 

differentiation method: 

   Dual 1ε .F x F x       (10) 

The DNAM could be summarized as following. Defining the 

dual number operation on the real function F(∙), the derivative 

F’(∙) at the point x can be calculated as a dual part of the 

function F(∙) value for the dual argument in the form x + 1ε. 
The method can be also extended for the functions of several 

variables. In this case, the ij-th Jacobian’s J component has the 

following form: 

 Dual ε ,ij i jJ F  
 

x e  (11) 

where i-th component of the vector function F(∙) is denoted by 

Fi(∙) and ej is the j-the column of the unit matrix I. Dim I = n, 

where n is the number of arguments of the vector function F(∙). 

5. Numerical examples 

In the full paper the numerical examples will show the 

robustness and the accuracy of the DNAM for calculations of 

Green’s functions derivatives in the case of the 

magnetoelectroelastic continuum. Also, the comparison with the 

results obtained by the FD schemes will be given to validate the 

accuracy of the FD methods.  

 

References 

[1] Buroni, F. C. and Saez, A., Three-dimensional Green’s 

function and its derivative for materials with general 

anisotropic magneto-electro-elastic coupling, Proc. R. Soc. A, 

466, pp. 515–537, 2010.  

[2] Dziatkiewicz, G., Complex variable step method for 

sensitivity  analysis of effective properties in multi-field 

micromechanics, Acta Mech., 227, pp. 11–28, 2016. 

[3] Fedeliński, P., et al., Advanced computer modeling in 

micromechanics, Silesian University Press, Gliwice, 2013. 

[4] Gross, D., and Seelig, T., Fracture mechanics with an 

introduction to micromechanics, Springer, Heidelberg, 2011. 

[5] Han, X., High-order derivatives of Green’s functions in 

magneto-electro-elastic materials, Int. J. Solids Struct., 46, 

pp. 3405–3411, 2009. 

[6] Messelmi,  F., Analysis of dual functions, Annu. Rev. Chaos 

Theory, Bifurcations Dyn. Syst. 4, pp. 37–54, 2013. 

[7] Pennestrì, E., Stefanelli, R., Linear algebra and numerical 

algorithms using dual numbers, Multibody Syst. Dyn. 18, 

pp. 323–344, 2007. 

[8] Taya, M., Electronic composites, Cambridge University Press, 

New York, 2005. 

 

 


