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Abstract

This paper provides a description of the so-called modified multiscale finite element method. Distinguishing two scales - micro- and
macroscale we take advantage of the mesh adaptivity. It is used independently at both analysis levels. First, for a coarse mesh gen-
eration. Then, at the level of a single coarse mesh element to comply with the microstructure. Using the multiscale FEM we obtain
effective stiffness matrices for each of coarse mesh elements. Finally, the main problem is solved using such a coarse discretization
with effective matrices incorporating the information on the complex microstructure. Significant reduction of the number of degrees of
freedom (NDOF) can be observed with error at the accepted level. Additionally, the method was enhanced with higher order approx-
imation. Proposed approach is particularly beneficial in the context of nonlinear analyses. Application to viscoelastic heterogeneous

materials is presented.
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1. Introduction

Among many approaches to numerical modeling of hetero-
geneous materials one can distinguish a group of discretization-
based methods. They are represented for instance by the local nu-
merical homogenization [5, 6] and the multiscale finite element
method [1, 4]. In general, the algorithms of such methods are
very similar. First, a coarse mesh has to be generated. It is, in
fact, the finest mesh we can computationally afford. In our re-
search we take advantage of the hp-adaptive FEM code [3] to
generate the optimal macroscale mesh. At this level we consider
the analyzed domain as a homogeneous one. The second step
of the overall algorithm is to proceed independently with each of
coarse elements. At this level one accounts for the microstructure
heterogeneity. Every coarse element is refined in order to comply
with the inclusions distribution. The core of the discretization-
based methods is to compute at this level effective stiffness matri-
ces and load vectors. Finally, one solves the coarse mesh problem
having transferred the information from the microscale.

2. Problem formulation

Viscoelastic deformations are considered in this paper.
Strong formulation of such a problem is as follows:
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where o denotes the stress tensor, X the body forces, C —1is the
tensor of material parameters, J* is the creep compliance func-
tion (kernel). Inelastic strains €* are defined by the Burgers con-
stitutive equation [2]. w; is a subdomain with smooth enough
tensor C ' and Q is the analyzed domain.

3. Multiscale finite element method

General idea of the method is as follows. On the basis of
the known microstrucure we modify the standard coarse element
shape functions. These new functions account for the material
distribution and are computed by solving of the following prob-
lem defined in every coarse element €2; (which we recall after
[1]): given W, which is a coarse mesh vector-valued shape func-
tion, we look for its vector-valued interpolant ® that is a discrete
solution (a linear combination of polynomial shape functions) of
the Dirichlet boundary value problem (2) with ®; € C°(2). In
other words the new shape functions are linear combinations of
fine mesh shape functions. Therefore, whenever the fine mesh
approximation provides convergence, also the coarse mesh does.
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where C° is the average value of C' (a material parameter tensor)
in the whole domain €.

Knowing fine mesh quantities (denoted with subscript h) one
computes K = ATK,A and f;; = AT f, that are effec-
tive coarse element stiffness matrix and load vector, respectively.
Columns of matrix A are the degrees of freedom of FEM approx-
imation of ® - discrete solutions to (2) for each macroscale shape
function W.

Selected standard and modified coarse element shape func-
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tion is shown in Fig. 1. We analyze a unit cube with a centrally lo-
cated cube (0.5x0.5x0.5) representing an inclusion. Young mod-
uli of the *matrix” and the ’inclusion’ are equal to 1.10% and 1.107,
respectively. At both scales we use a cubic approximation. On the
left side of the Fig. 1 a standard shape function is shown, whereas
on the right side an approximated solution to (2) is presented.
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Figure 1: Selected standard (left column) and modified (right col-
umn) coarse element shape function

4. Application of MSFEM to viscoelasticity

The Burgers material model was adopted for modeling of the
viscoelastic materials. We assumed also that the material exhibits
only small displacements and small displacement gradients. In
the algorithm we use in the analysis, occurrence of the inelastic
strains contributes to the right hand side vector. Stiffness matrix
remains the same.

Coupling nonlinear analyses with the MSFEM is quite easy
then. Before executing the main loop over time instants one com-
putes once effective stiffness matrices of the coarse mesh ele-
ments. Within the loop we split the viscoelasticity problem into
local problems solved within coarse elements (see [6]). On the
basis of the inelastic strains one computes fine mesh load vec-
tor that is subsequently multiplied by the restriction operator R
(R = A7) to constitute an effective load vector. Finally, one
can solve the coarse mesh viscoelasticity problem using effective
element matrices.

5. hp-adaptivity

Additional enhancement of the proposed approach is the ap-
plication of the automatic adaptivity. We take advantage of the
code described in [3]. Considering the whole domain we solve
an auxiliary problem in order to generate the optimal hp-adapted
coarse mesh (see [3]) accounting for the global solution behav-
ior but neglecting inelastic phenomena. We keep this mesh for
the viscoelasic problem without further refinements. Addition-
ally, within coarse mesh elements h-adaptivity detecting phase
boundaries is performed. These mesh refinements are not re-
peated within viscoelastic loops. Such an approach allows one
to distribute computational power effectively.

Results of an exemplary creep test are shown in Fig. 2. We
analyzed a brick (2mx1mx1m) fixed at the right hand side face
and loaded at the opposite one. There are 128 periodically dis-
tributed cuboid inclusions with Young modulus values twice as
large as the matrix. In Fig. 3 one can observe an hp-adapted
coarse mesh (third and fourth order of approximation). The com-
parison of the dominating strain component at selected point A
for the MSFEM and the brute force (over-kill mesh) solutions is
shown in Fig. 2.

6. Final remarks

Novelty of the proposed approach is the integration of two
well-established efficient methods (MSFEM and hp-FEM) for
modeling of heterogeneous viscoelastic materials. Numerical re-
sults (see [7]) confirmed high reliability of our approach. Partic-
ularly, application of the higher order approximation due to auto-
matic hp-adaptivity increased the efficiency. Enormous reduction
of NDOF could be observed comparing homogenized solutions
and fine mesh brute force solutions. Error of the MSFEM was

acceptable - of the order of several percent.

Presented approach is quite general. There are no limitations
concerning periodicity of the domain, nor separation of scales
condition that is typical in RVE-based homogenization.

Our further research effort is to enhance the implementation
towards full parallelization of the overall method.
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Figure 3: hp-adapted coarse mesh
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