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Abstract 
 

The main aim of this elaboration is to verify the influence of the response functions in the stochastic perturbation-based iterative 
approach on the probabilistic moments and coefficients of the grillage structures. The second purpose is to compare their two 
different types, orthogonal and diagrid, in terms of the time-independent reliability including an uncertainty in steel Young modulus. 
We have considered different performance functions concerning the basic eigenfrequency, the global extreme vertical deflection and 
also local deformation. 
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1. Introduction 

The diagrid structural systems have come out as one of the 
most efficient, most adaptable and most innovative approaches 
to the structuring buildings of this century [1,4]. Due to 
an aesthetic potential and to the increasing architectural 
popularity it seems therefore essential to examine its reliability 
and, additionally compare it with this obtained 
for the traditional, orthogonal structure. Computer analysis 
of civil engineering structures with random parameters has 
remarkably increasing influence on structural design process, 
optimization and reliability modelling because of variety 
of uncertainty sources. In the case of the grillages examined 
Young modulus, as one of the most important parameter, 
uncertainty have been considered. A solution of the structural 
problem including randomness is finished with the reliability 
indices verification, according to the general rules included 
in Eurocode [2]. Their determination has been provided here 
by an application of the generalized iterative stochastic 
perturbation technique [3] and the response function method. 
Computational implementation of this method is carried out 
using the FEM civil engineering system ROBOT, where 
the coefficients of dozen different sets of responses are 
computed in the computer algebra system MAPLE from several 
solutions of the original problem obtained for Young modulus 
varying about its expectation (210 GPa). This form leads 
to determination of all their partial derivatives with respect 
to stochastic input variable which can be further used for 
determination of probabilistic moments and final values 
of the reliability indices. Finally, the results may be compared 
to find out (a) which polynomial-based response provides 
the best correctness and (b) which structure is more efficient 
in terms of the given uncertainty. 

2. The iterative stochastic perturbation technique 

The basic idea of the stochastic perturbation approach 
is an expansion of all random functions of the given problem  

 
 
via Taylor series of the required order about their expectations 
using perturbation parameter  . In the case of some real 

function  bf  of the stationary input random variable  b  

with a symmetric probability density function, one can show 
that in the 10th order perturbation approach the expectation 
of the structural response function of course remains the same 
in both linearized and in the nonlinear iterative schemes: 
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where )(2 bm   denotes 2mth order central probabilistic moment 

of the quantity b. 
Next three probabilistic moments are obtained by including 

Taylor expansion of the tenth order valid for the expected value 
into their well-known integral definitions. As a result we obtain 
some extra components in comparison with the linearized 
version of stochastic perturbation technique, which can 
be represented for the variance as follows: 
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3. Response Function Method 

As shown above, one of the crucial issues during applying 
the iterative perturbation based approach is numerical 
determination of partial derivatives of the structural response 
function of up to nth order with respect to the randomized 
parameter. To complete this task, it is necessary to determine 
such a function by a multiple solution of the boundary value 
problem around the expectation of the random parameter, 

in  the  interval  bbbb  00 , . Each unknown response 

function is approximated here by the dozen different sets 
of responses computed using the Least Squares Method as well 
as its weighted version (WLSM). We have used: B-spline curve, 
analytical dependence and polynomials of several orders: 10th, 
maximizing correlation, minimizing variance, maximizing their 
quotient and also maximizing correlation between the LSM and 
the WLSM solution. 

4. Finite Element Analysis 

All the numerical tests have been performed on the two types, 
but four examples of the grillages: orthogonal (Model O) and 
three diagrids (Model Dm - medium, Model Db - the biggest, 
Model Ds - the smallest grid), presented correspondingly in Fig. 1 a-d. 
 

 

Figure 1: Examples of the grillage structure: a) orthogonal, 
b) diagrid medium, c) diagrid big, d) diagrid small 

 
The 3D beam finite elements and rigid connection have been 
used in the mesh together with simple supports with all 
the linear displacements fixed. 

5. Computational reliability analysis 

The analyzed response functions have meaningful influence 
on the probabilistic estimators. The differences are considerable 
and only for the input coefficient of variation of Young 
modulus (α) less than 0.025 results are similar, excluding 
skewness and kurtosis for B-Spline curves. 

The criterion of minimizing variance have provided 
correctness in the narrowest interval. Better results have been 
obtained for maximizing quotient of correlation and variance, 
but the best for maximizing correlation (both for the WLSM 
and the LSM). 

Excluding the least accurate criterion, the weighted 
least-squares method have provided much more relevant results. 
Polynomials of optimal degree have additionally proved to be 
better than for 10th order contradicting assumption that higher 
order response will more precisely reflect the structure 
behaviour. 

Analytical dependencies have turn out to be hardly sensitive 
to weights. Therefore, the criterion of maximizing correlation 
between the LSM and the WLSM solution have been created. 
Such polynomials have proved to be relevant in the widest 
interval of α (Fig. 2). 
 

 

 

 

 

Figure 2: Comparison of the results on the example of reliability 
index of maximum of the vertical deflection (left-analytical 
dependences, right-optimal polynomial) 

 
Computational analysis provided in this paper shows that 

the grillage from Model Db is the most reliable in case 
of the examined structures. Admittedly, the SLS ratio 
is the lowest, the weight of structure is lower than for the rest 
of diagrids anyway. Although Model Db is almost 79% heavier 
than Model O, the decisive reliability index is at least 3.5 times 
bigger (Fig. 3), which makes such a structure approximately 
twice much effective in terms of reliability with Young modulus 
as input random variable in case of the examined structures. 
 

 

Figure 3: Ratio of the minimal reliability indices 
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