
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland 

*This work was supported by the Deutsche Forschungsgemeinschaft within the framework of the DFG project HU 1734/2-1. 

 

 

 

Determination of post-shakedown quantities of a pipe bend via the Simplified Theory of 

Plastic Zones compared with load history dependent incremental analysis 
 

Bastian Vollrath* and Hartwig Hübel 

Faculty of Architecture, Civil Engineering and Urban Planning 

Brandenburg University of Technology Cottbus-Senftenberg 

Lipezker Str. 47, 03048 Cottbus, Germany 

e-mail: bastian.vollrath(at)b-tu.de  

e-mail: hartwig.huebel(at)b-tu.de  

 

 

Abstract 

The Simplified Theory of Plastic Zones (STPZ) may be used to determine post-shakedown quantities such as strain ranges and 

accumulated strains. The principles of the method are summarized succinctly and the practical applicability is shown by the example 

of a pipe bend subjected to internal pressure and cyclic in-plane bending.  
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1. Introduction 

In case of over-elastic cyclic loading, strain ranges and 

accumulated strains are needed for performing a lifetime 

analysis. If an incremental analysis is used for obtaining these 

post-shakedown quantities, many load cycles must be analysed 

on a step-by-step basis, if a ratcheting mechanism is present. The 

computational effort involved can easily exceed time and 

hardware resources. Based on Zarka’s method, the Simplified 

Theory of Plastic Zones was developed as a direct method, 

aiming at obtaining post-shakedown quantities regardless of the 

load history. The computational cost consists of a handful of pure 

elastic FE calculations. The reward is a well-approximated 

solution.  

The Simplified Theory of Plastic Zones (STPZ) is described 

in detail in [1], including many examples.  

2. Basics about the STPZ 

In simple words, the STPZ is used to search residual stress 

fields in the state of elastic or plastic shakedown, based on pure 

elastic calculations. Once the constant or cyclically varying 

residual stress fields are known, elastic-plastic stresses, strains, 

displacements etc. can subsequently be determined by simple 

superposition with fictitiously elastic calculated stresses, strains 

(or strain ranges), displacements etc. 

To obtain the residual stress field, a “modified elastic 

analysis” has to be performed, where the elastic material 

parameters (Young’s modulus E and Poisson’s ratio ) of the 

structure are modified in the plastic zone, along with applying 

some appropriately defined initial strains as modified loading. 

The modified material parameters are independent of the load 

level, while the initial strains are not. 

Mises yield surface and multilinear kinematic hardening are 

adopted. Multilinear kinematic hardening is introduced by 

employing an overlay model [2]. If reduced to a bilinear material 

model, unlimited linear kinematic hardening is obtained, so that 

the modified elastic material parameters become 
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whereby Et means the elastic-plastic tangent modulus. The initial 

strain components εi,0 are given by 
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where use of the so-called transformed internal variable Yi is 

made which is defined by the difference of the deviatoric part of 

the residual stress 𝜌i and the backstress ξi: 

'
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None of these stresses are known a priori. Providing 

reasonable estimates of Yi on the basis of fictitious elastic 

analyses is the main challenge for the STPZ. Once the geometry 

of the plastic zone as well as the values of Yi in the plastic zone 

are estimated, a modified elastic analysis is performed, of which 

the results can be used to improve the initial estimate of the 

geometry of the plastic zone and of Yi. Thus, the entire procedure 

is subject to iterative improvement. 

Usually, convergence is reached within few modified elastic 

analyses, and the quality of the results of the converged solution 

approximates the solution obtained by cyclic incremental 

analyses very well. Strain ranges in the state of plastic shakedown 

and strains accumulated through many cycles of loading prior to 

elastic or plastic shakedown can thus be achieved at little 

computational effort, just consisting of some linear elastic 

analyses (fictitious elastic and modified elastic analyses). 

3. Example of a pipe bend 

In thermal power plants, pipe bends are loaded by an in-plane 

bending moment Min-plane resulting from thermal expansion of 

adjacent straight pipe sections. The emerging cyclic loading, 

along with the primary load (pressure p), can produce a ratcheting 

mechanism. 
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3.1. Simplified geometry model 

Assuming that the stiffening effect of the attached straight 

pipes on the ovalisation of the pipe bend can be ignored (at least 

in the maximum stressed section of a 90° bend), the elbow can 

be considered as an axisymmetric torus shell, as shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pipe bend simplified as a torus section 

3.2. Material model and loadings 

The material model used is a bilinear model with linear 

kinematic hardening, as shown in Fig. 3. Internal pressure p is 

applied as steady load (80% of elastic limit load), while the 

displacement-controlled in-plane bending (three times the elastic 

limit load, corresponding to an angle of 1.325° related to a 90° 

elbow) is applied cyclically. 

 

 

 

 

 

 

 

 

Figure 3: Left: material model, right: loading history 

3.3. Results and conclusion 

The advantage of the STPZ is a good approximation of 

accumulated strain with minimal computational effort, Fig. 4. 

Discrepancies between STPZ and incremental analysis are hardly 

noticeable. On a percentage basis the difference in 

circumferential strains amounts to 2.3%.  

The left curve in Fig. 5 demonstrates a ratcheting mechanism, 

in which the accumulation of strains per cycle is vividly shown. 

In comparison, the left curves show the solutions of the STPZ for 

minimal and maximal loading, requiring significantly smaller 

computational effort. 

In this example, about thousand equilibrium iterations were 

required by the incremental analysis to get through the 15 load 

cycles before plastic shakedown is approximately achieved, Fig. 

5 left. In contrast, 22 linear elastic analyses (2 fictitious elastic 

analyses, 10 modified elastic analyses for determining the strain 

range and another 10 modified elastic analyses for determining 

the accumulated strain) were sufficient for the STPZ. Finally, it 

needs to be mentioned that each solutions of the modified 

analyses represents an approximation of the shakedown state, 

Fig. 5 right. 

 
 

Figure 4: Contour plots of circumferential strains in the state of 

shakedown at zero in-plane bending, top: incremental analysis, 

bottom: Simplified Theory of Plastic Zones 

 

 

 

 

Figure 5: Maximum principal strains over computational effort, 

left: incremental analysis, right: STPZ 
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