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Abstract

In order to account for the so-called size effect in micro-/nanomaterials, second gradient continuum theories are promising and used in
elasticity to a great extent. Additional material length scale parameters are introduced and the problems of static beam and plate bending
are analyzed. Moreover, it is attempted to look at the EINSTEIN–DE-HAAS–effect from that end. To be more specific, body-couples
are applied to a solid and connected to second gradients of displacements. Balance equations of a generalized continuum theory are
presented and higher-order stress-strain relations are derived. In order to account for second gradients of displacements, which manifest
themselves in the higher-order strain energy density, a global C1–continuous displacement field is desirable as a solution. The so-called
HERMITE finite element formulation allows for merging gradients between the elements and therefore is a good candidate in order to
achieve at least node-wise C1–continuity. Element stiffness matrices as well as global stiffness matrices are developed for some specific
elastic problems. Convergence, C1–continuity, and the size effect are demonstrated in each numerical simulation. The resultant material
behavior is compared to experiments for the bending stiffness of differently sized micro-beams made of the polymer SU-8.
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1. Introduction

Materials with intrinsic micro or nano-structure may show
size-dependent material behavior, which is reflected, e.g., in a
stiffer elastic response to external forces, when the size of the
material body is reduced. A quantitative understanding of a
size effect is of great importance when modeling Micro- and
Nano-Electro-Mechanical Systems (MEMS/NEMS). Driven by
the miniaturization as an improvement of the performance of
MEMS, the requirement of reliability in simulation techniques
increases. Experimental validation therefore is given in, e.g.,
[1, 2, 3, 4]. Second Gradient (SG) continuum theories can be
used, if the elastic deformation behavior of the material body de-
pends on the thickness, while in the absence of strain gradients
(e.g., in uniaxial tensile tests [2]) it is not used. Those materials
are referred to as "non-simple materials of the gradient type" and
are in reality, for example, polymers at a small scale. Since con-
ventional continuum theories based on the CAUCHY continuum
are not able to predict size effects, the present work deals with the
Modified Strain Gradient theory (MSG) developed in, e.g., [5, 6].
The application of conventional Finite Element (FE) strategies
may lead to inaccurate results if finite element formulations are
used, which only fulfill global C0–continuity. The scope of this
work is, to develop FE formulations based on HERMITE polyno-
mials in order to fulfill node-wise C1–continuity of the solution.

2. A second gradient theory of elasticity

2.1. Strain energy formulation

The EINSTEIN summation convention is used on repeated in-
dices and spatial partial derivatives in the Cartesian coordinate
system are denoted by comma-separated indices. The present
work is based on one of the three reduced forms of the strain
energy densities for small deformations, uSG, as postulated by
MINDLIN (1962) [5]. A modified strain gradient energy density
(acc. to [7, 8, 9]) is derived from MINDLIN’s second form of a

linear isotropic strain energy density:

uMSG = 2Gεij εij + λεkk εii + 2G`20εmm,i εkk,i +

+ 2G`21η
(1)
ijk η

(1)
ijk + 2G`22χ

S
ij χ

S
ij ,
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where λ and G are LAMÉ’s constants, whereas `0, `1 and `2 de-
note additional material length scale parameters. These param-
eters are of the dimension of squared length in order to guaran-
tee a positive definite problem in the energy minimization. The
normalization of the higher-order terms by G is arbitrary. With
respect to a formulation of the problem in terms of displacements
ui, the strain and higher-order strain tensors are:

εij = 1
2
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2.2. Deformation assumptions

The present work deals with the following restrictions to the
displacement field in order to derive partial differential equations
(PDE) and their weak forms by the help of variational calculus.

• EULER-BERNOULLI beams

u1 = −x3
dw

dx1
, u2 = 0 , u3 = w(x1) (3)

• TIMOSHENKO beams

u1 = −x3φ(x1) , u2 = 0 , u3 = w(x1) (4)

• KIRCHHOFF-LOVE plates

u1 = −x3
∂w

∂x1
, u2 = −x3

∂w

∂x2
, u3 = w(x1, x2) (5)

• and plane strain assumptions

u3 = 0 ,
∂ui
∂x3

= 0 . (6)
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3. C1–continuous finite element approach

3.1. Governing differential equations

The reduced generalized balance equations of (linear) mo-
mentum and spin [10],

σij ,i = 0 , µij ,i = −ρlj , (7)

where µij is the couple stress tensor and lj the body-moments,
are used to derive the following PDEs: The weak form for
EULER-BERNOULLI beams is

Sw′′v′′ +Kw′′′v′′′ = 0 , (8)

where S and K are constants that include geometry and material
coefficients, and v(x1) denotes the test-function (variation of w).
The system of PDEs for TIMOSHENKO beams read[
T (φ− w′) −Kφ′′ −Nw′′ + SφIV] = −m(x1) ,[

T (w′′ − φ′) + PwIV +Nφ′′′] = q(x1) ,
(9)

where T , N and P are constants of the system, and m and q de-
note force and moment distributions, respectively. The PDE for
KIRCHHOFF-LOVE plates becomes

R∆∆∆w(x1, x2) +H∆∆w(x1, x2) = p(x1, x2) , (10)

where ∆ is the Laplacian, R and H are system constants and p is
the load distribution prependicular to the plate.

3.2. HERMITE finite elements

HERMITE finite elements consist of the HERMITE polynomials

H1 = 2ζ3 − 3ζ2 + 1 , H2 = ζ3 − 2ζ2 + ζ ,

H3 = −2ζ3 + 3ζ2 , H4 = ζ3 − ζ2,
(11)

which are linearly superposed and multiplicatively connected to
form either 1D or 2D trail- and test-functions we and ve per ele-
ment, e,

ve(ζ, ξ) =

4∑
α=1

4∑
β=1

HαHβ , we(ζ, ξ) =

4∑
δ=1

4∑
γ=1

ce
δγHδHγ .

(12)
By inserting them into one of the respective weak form, we
worked out the element’s stiffness matrix for equidistantly dis-
tributed elements.

3.3. Results

t W L E `0 = `1 = `2 F

100µm 2t 20t 1.44 GPa 17.6µm 1µN

Table 1: Thickness t, widthW , length L, elastic modulusE, ma-
terial length scale parameters ` and the force F used for the beam
simulations.

Figure 1: Plot of the C1–continuous bending linew of an EULER-
BERNOULLI beam, solved with five elements and its first and
second derivative.

The curves in Fig. 1 represent the exact HERMITE base poly-
nomials, without any interpolation. Convergence and size effect
behavior can be shown to be fulfilled.

Figure 2: Plot of the C1–continuous displacements for the plane
strain assumptions, loaded only by the body-couples l3.

The EINSTEIN–DE-HAAS effect exposes a relationship between
magnetism, angular momentum, and the spin of elementary parti-
cles, driven by an external magnetic field. This effect gives rise to
a simulation how body-couples (or -moments) will act on a beam,
cf.. Fig. 2. There, a field of specific static moments penetrates the
beam, which is fixed at one end and free at the other. As a result,
the beam bends.

4. Conclusions

A modified second gradient continuum theory of elasticity
was elaborated. Different restrictions on the displacement field
were carried out in order to derive the corresponding partial dif-
ferential equations and weak forms, respectively. In order to keep
the first derivative of the solution continuous we discretized the
problem using HERMITE finite elements. It follows that the re-
sulting FE approximations show a size effect, as expected from
the higher-order theory, as well as convergence in terms of in-
creasing degrees of freedoms in the FE algorithm. This will allow
us simulating elastostatic problems of arbitrary geometries for
micromechanical applications, when considering a higher-order
material behavior. So far this approach is restricted to equidis-
tantly constructed meshes, and it is accompanied by a larger num-
ber of element coefficients than in conventional FEM.
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