
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland 

 
 
 

Error driven remeshing strategy in an elastic-plastic shakedown problem 
 

Michał Pazdanowski1 
1 Faculty of Civil Engineering, Cracow University of Technology 

Warszawska 24, 31-155 Cracow, Poland 
e-mail: plpazdan@cyf-kr.edu.pl 

 
 

Abstract 
 

A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies 
made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated 
the existence of areas characterized by extremely high gradients in the stress field sought. In order to account for that, relatively 
dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in 
unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and 
drive the mesh regeneration algorithm by selected error indicators. 
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1. Introduction 

The residual stresses may arise in metallic materials as a 
result of the manufacturing process or the conditions 
encountered during service [6], when the applied loads exceed 
the elastic load envelope. In the case of residual stresses 
induced during service by localized cyclic contact loads of high 
intensity [7], the obtained residual stress distributions are 
characterized by very high gradients within and adjacent to the 
plastic zone. Thus in these zones relatively dense mesh is 
necessary in order to replicate the stress behaviour correctly. As 
these zones are not known a’priori, the usual procedure was to 
generate the sufficiently dense mesh in the whole potentially 
affected zone, thus ending in unnecessary long calculation 
times. The application of intelligent meshing algorithm should 
decrease this time significantly. 

2. Mechanical model 

The mechanical model allowing for the calculation of the 
stable (time independent) residual stress distribution in a 
prismatic body made of elastic-perfectly plastic material, 
subjected to the cyclic loading program exceeding its elastic 
bearing capacity had been proposed for the first time in [4]. 
Later on this model has been developed to account for 
kinematic hardening of the material [2] and used as a basis for 
development of three independent computational models based 
on the Finite Element [3], Boundary Element [1] and 
Generalized Finite Difference [5] methods. The final version of 
this model may be stated as the following two step procedure: 

I calculate the correlation matrix ijklA : 
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solving the following nonlinear constrained optimization 
problem for self equilibrated stresses r

ijσ  as a function of plastic 

distortions p
ijε  : 
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II find the p
ijε  which minimize the total complementary 

energy functional: 

∫ ⋅⋅⋅⋅⋅=ΨΨ
V

p
mnklmnijkl

T
ghij

p
gh

p
ij

p
ij dVACA

p
ij

εεεε
ε

)( ),(min  (5) 

at: 

( ) 01≤−++⋅+⋅Φ T
ij

E
ij

pC
ij

p
ijghij cA σσεε  (6) 

 in V  – the yield conditions, 
where: 

HE
HEc
−
⋅

=  , – kinematic hardening parameter. 

The following denotations hold in (1) - (6): 
r
ijσ  – residual stresses arising in the considered body due to 

the actual applied cyclic loads exceeding the body’s 
elastic bearing capacity, 

p
ijε  – the sought plastic strains, 
pC
ijε  – plastic strains in the computational plastic zone assumed 

to be constant at each point during the iteration, but 
changing between iterations, 

E
ijσ  – elastic stresses calculated as if the considered body 

deformed purely elastically under current loading 
program, 

T
ijσ  – thermal stresses induced in the considered body due to 

the external actions and determined as if the body 
deformed purely elastically under the considered 
thermal load, 

ghijA  –  singular correlation matrix linking plastic strains and 
residual stresses (1), 

E  – Young’s modulus, 
H  – elastic-plastic tangent modulus (hardening ratio), 

ijklC  – elastic compliance matrix. 
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In order to determine the final plastic strain p
ijε  and residual 

stress r
ijσ  state an iterative approach has to be used. At the 

beginning the initial plastic strain state 0=pC
ijε  is assumed. 

During the subsequent n  iterations this state is modified 
according to the following formula: 
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until a stable plastic strain distribution p
ij

nε  is obtained. 
This model has been used successfully to determine the 

residual stresses induced in prismatic bodies by contact loads. 
The Finite Difference Method generalized for arbitrarily 
irregular grids has been used to develop the appropriate 
numerical model with quadrilateral integration areas spanned 
between nodes (Fig. 1) and equilibrium as well as yield 
conditions enforced at the centroids of those areas. 

3. Standard approach 

As the contact loads generate highly localized residual 
stress distributions characterized by very high gradients rapidly 
changing sign over small zones, relatively dense computational 
meshes had to be used in the whole body (Fig. 1) resulting in 
unnecessary expenditure of time and computer resources. 

Figure 1: Meshes used for calculations: low density at left, high 
density in the middle and adapted at right. 

4. Modified approach 

An effort was undertaken to adapt the mesh to the solved 
problem by locally adjusting its density according to selected 
criteria. Two criteria have been considered so far, i.e. the 
straightforward one, where the integration areas in which plastic 
behaviour of material occured (i.e. the computational plastic 
zone) are split into four sub areas of similar size and then the 
calculations are rerun on thus modified mesh, and the more 
complex one, where a preset percentage of integration areas 
(those in which the complementary energy is the highest) is 
treated as in the first criterion. The first criterion should ensure 
a high quality of the solution (residual stresses) at least in the 
vicinity of the contact zone, where yielding occurs. The second 
criterion should work in a manner similar to the first one, but 
should offer the advantage of better control over the area 
occupied by integration zones designated for subdivision. 

5. Numerical results 

An 132RE (US) railroad rail subjected to simulated service 
load of 150 kN applied over a 1,25 by 2,00 cm rectangular 
patch at the axis of symmetry, as a biparabolic pressure 
distribution, has been treated as a test example. 

The obtained r
xxσ  (horizontal in plane) residual stress 

distribution along the vertical axis of symmetry of the rail is 

depicted in Fig. 2 against three reference solutions obtained on 
relatively regular meshes, having 400 (Fig. 1, left), 1600 (Fig. 1, 
center) and 6400 integration elements, respectively. Vertical 
axis shows the distance from the rail foot (in cm), while the 
value of residual stress in MPa is shown on horizontal axis. The 
locally adjusted mesh had the density of the third mesh in the 
plastic zone and the first mesh outside this zone (Fig. 1, right). 

 
Figure 2: r

xxσ  residual stress along rail axis of symmetry. 

6. Conclusions 

Preliminary analysis seems to indicate that the residual 
stress distributions obtained on the mesh with locally modified 
density (Fig. 1 right) follow quite accurately the distributions 
obtained on the denser of meshes (Fig. 1 center) used as a basis 
for comparison. 

The most up to date results will be shown during the 
conference. 

References 

[1] Cecot, W., Orkisz, J., Boundary Element Analysis of Actual 
Residual Stresses in Elastic-Plastic Bodies under Cyclic 
Loading, Int.J.Engng Anal. with Boundary Elements, 9/4, 
pp. 289-292, 1992. 

[2] Cecot, W., Orkisz, J., Prediction of Actual Residual Stresses 
Resulting from Cyclic Loading in Kinematic Hardening 
Material, Proceedings of the International Conference 
COMPLAS V, Barcelon, pp. 1879-1891, 1997. 

[3] Holowinski, M., Orkisz, J., Hybrid Finite Element Method 
for Estimation of Actual Residual Stresses. In: O.Orringer et 
al., Eds, Residual Stress in Rails, II, Kluwer Acad.Publ., pp. 
125-149, 1992. 

[4] Orkisz, J., Harris, A., Analysis of Residual Stresses at 
Shakedown, A Hybrid Approach, Theoretical and Applied 
Fracture Mechanics, 9, pp. 109-121, 1988. 

[5] Pazdanowski, M., On estimation of residual stresses in rails 
using shake-down based method, Archives of Transport, 
XXII (3), pp. 319-336, 2010. 

[6] Steel, R.K., et al. Catastrophic Web Cracking of Railroad 
Rail: A Discussion of the Unanswered Questions, 
Association of American Railroads, 1990. 

[7] Zerbst, U., Lunden, R., Edel, K.-O., Smith R., A., 
Introduction to the damage tolerance behavior of railway 
rails – a review, Engineering Fracture Mechanics, 76, pp. 
2563-2601, 2009. 


