
CMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, PolandCMM-2017 – 22nd Computer Methods in Mechanics September 13th–16th 2017, Lublin, Poland

Customizing the engineering moduli of elasticity
in the context of structural optimization

Grzegorz Dzierżanowski∗
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Abstract

The research concerns a structural optimization problem set in the broad perspective of Free Material Design (FMD). Our approach
differs from the standard one by choice of the design variable. Namely, we drop the full Hooke’s tensor, focusing on engineering
moduli of elasticity instead. Based on discretion in the representation of stress, the stored elastic energy is appropriately decomposed,
thus elastic moduli corresponding to that decomposition are explicitly revealed. This paves the way towards customizing the moduli in
the context of structural optimization. Hence, we propose a term Engineering Moduli Design (EMD) for the nickname of the method.
The general idea of EMD is presented in the framework of three-dimensional linear elasticity for a body subjected to one-parameter
load. The method, however, is immediately applicable in two dimensions, as shown in the example. It can also be adapted to optimal
design of plates in bending, coupled membrane-bending optimization problems, and multi-parameter load cases.
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1. Notation and definitions

Consider a body occupying a domain Ω ⊂ R

3 and param-
eterize Ω by x = (x1, x2, x3). Let u : Ω → R

3 represent
the displacement field in Ω and write u ∈ V if the compo-
nents of u satisfy certain conditions on the boundary ∂Ω. The
deformation measure ε(u) : Ω → E

2
s is given by εαβ(u) =

(1/2)(uα,β + uβ,α), α, β = 1, 2, 3. Here, E2
s denotes the space

of second-order symmetric tensors.
The elastic material distributed in Ω is anisotropic and non-

homogeneous. Write E4
s for the set of fourth-order tensors with

Hooke’s symmetries and assume {C, C−1} : Ω → E

4
s for the

stiffness and compliance tensor fields respectively.
Introduce the stress field τ : Ω → E

2
s and suppose that τ is

linked with the deformation measure by ε = C
−1τ . Next, sup-

pose that the body is subjected to a one-parameter load applied
on the boundary ∂Ω, i.e. introduce p : ∂Ω → R

3, and express
the equilibrium equation as
∫

Ω

τ : ε(v) dx =

∫

∂Ω

p · v ds, ∀v ∈ V. (1)

The symbols “:” and “·” denote scalar products in respective
spaces. We write τ ∈ Σ for the stress fields satisfying (1).

In case of linear elasticity, the (doubled) stored energy func-
tion Φ = Φ(C, τ ) is given by the quadratic form

Φ(C, τ ) = τ : C−1
τ . (2)

Set m ∈ R3, ‖m‖ = 1, for a direction in physical space
R

3; (m1,m2,m3) – for an orthonormal triplet, and 1 – for
a unit tensor in E4

s . We discuss the optimality of: E(m) –
Young’s modulus in direction m; ν(mα,mβ) – the Poisson ra-
tio in direction mα corresponding to the stretch in direction mβ ;
G(mα,mβ) – the shear modulus in the plane defined by a pair
(mα,mβ) and K – the bulk modulus. By [5] we have

1

E(m)
= (m⊗m) : C−1(m⊗m), (3)

ν(mα,mβ)

E(mβ)
= −(mα ⊗mα) : C

−1(mβ ⊗mβ), (4)

1

4G(mα,mβ)
= (mα ⊗mβ) : C

−1(mβ ⊗mα), (5)

1

K
= 1 : C−1

1. (6)

In what follows, we write Eα ≡ E(mα), ναβ ≡ ν(mα,mβ)
and Gαβ ≡ G(mα,mβ). For positively defined Φ(C, τ ), and
due to Hooke’s symmetries of C we have

Eα ≥ 0, Eα ναβ = Eβ νβα, Gαβ ≥ 0, K ≥ 0. (7)

2. Customizing Young’s modulus

Fix {mα}3α=1 for a proper basis of τ at x ∈ Ω, and write

τ =
∑

α=1,2,3

τα mα ⊗mα. (8)

With (3) and (4), the stored energy decomposes to

Φ(C, τ ) = ΦE(C, τ ) + ΦEν(C, τ )

=
∑

α=1,2,3

(τα)
2

Eα

−
∑

α,β=1,2,3

α<β

(τατβ)
(ναβ

Eβ

+
νβα

Eα

)

. (9)

Optimal Eα = Eα(x), α = 1, 2, 3, are determined through

(PE)

Y = min

{
∫

Ω

Φ(C, τ ) dx

∣

∣

∣

∣

τ ∈ Σ, Eα ∈ E
}

E =

{

Eα : Eα ≥ 0,
∑

α=1,2,3

∫

Ω

Eα dx = E0 |Ω|
}

.

A close link between (PE) and celebrated Michell prob-
lem of minimal structural weight unveils in case of ναβ = 0,
α, β = 1, 2, 3, α 6= β. This feature is discussed in [3].
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3. Customizing shear and bulk moduli

Assume now that stress is represented by,

τ = τ 1+ d, τ =
tr τ

3
, d = s1 + s2 + s3 (10)

where d denotes a deviator of τ and

s1 = s1 (m2 ⊗m3 +m3 ⊗m2),

s2 = s2 (m1 ⊗m3 +m3 ⊗m1),

s3 = s3 (m1 ⊗m2 +m2 ⊗m1), (11)

are pure shear stress tensors acting in the planes defined by pairs
(mα,mβ), α, β = 1, 2, 3, α 6= β. For given τ , the orientation
of (m1,m2,m3) in R3 can be exactly found at each x ∈ Ω.
The Reader is referred to [1, 4] for details.

The stored energy is now decomposed in the form

Φ(C, τ ) = ΦG(C, τ ) + ΦK(C,τ ) + Φ0(C,τ ) (12)

where, see (5) and (6),

ΦG(C, τ ) =
∑

α=1,2,3

sα : C−1
sα=

(s1)
2

4G23

+
(s2)

2

4G13

+
(s3)

2

4G12

, (13)

ΦK(C, τ ) = τ 2
1 : C−1

1 =
τ 2

K
, (14)

Φ 0(C,τ ) = τ
(

d : C−1
1+ 1 : C−1

d
)

+
∑

α,β=1,2,3

α<β

(

sα : C−1
sβ + sβ : C−1

sα

)

. (15)

Note that Φ0(C, τ ) = 0 for orthotropic, tetragonal, cubic, trans-
versely isotropic and isotropic materials. Indeed, the coefficients
of C involved in (15) take zero values for these symmetry classes,
see [2].

Optimal Gαβ = Gαβ(x), α, β = 1, 2, 3, are given by

(PG)

Y = min

{
∫

Ω

Φ(C, τ ) dx

∣

∣

∣

∣

τ ∈ Σ, Gαβ ∈ G
}

G =

{

Gαβ :Gαβ ≥ 0,
∑

α,β=1,2,3
α<β

∫

Ω

Gαβ dx = G0|Ω|
}

.

Similarly, optimal K = K(x) is obtained from

(PK)

Y = min

{
∫

Ω

Φ(C, τ ) dx

∣

∣

∣

∣

τ ∈ Σ, K ∈ K
}

K =

{

K : K ≥ 0,

∫

Ω

K dx = K0 |Ω|
}

.

4. Example

The discussion from previous sections can be repeated, with
elementary changes, in the two-dimensional setting. Purpose of
an example in this section is illustrative: to provide a brief insight
into the problems formulated in the framework of EMD.

Consider annular plate of internal radius rint = a, external
radius rext = b, a < b, and constant thickness h ≪ a. Assume
that uniform, tangent loading τ0 is applied to the internal face of
the plate; the external face is loaded with tangent loading of such
intensity that the plate is in statical equilibrium. Introduce polar
coordinates (ϑ, ̺), where

̺ =
r

a
∈ (1, γ), γ =

b

a
> 1, (16)

and {eϑ,e̺} – a local, orthonormal basis.
Thus posed problem is statically determinate with the stress

field τ = τ (̺),

τ (̺) =
τ0
̺2

(eϑ ⊗ e̺ + e̺ ⊗ eϑ). (17)

Optimal distribution of Young’s modulus. Write (m1,m2)
for the curvilinear proper basis of τ . The problem (PE) becomes

Y =

2π
∫

0

γ
∫

1

min
E1,E2≥0

Φλ(C, τ )a2̺ d̺ dϑ− λE0 π a2(γ2 − 1),

Φλ(C, τ ) =
τ0
̺2

(1 + ν21
E1

+
1 + ν12
E2

)

+ λ(E1 +E2), (18)

where λ denotes the Langrange multiplier for the design con-
straint (limit on the cost function) imposed in the description of E .
From the necessary conditions of optimality we obtain

E1 =
|τ0|
̺2

√

1 + ν21
λ

, E2 =
|τ0|
̺2

√

1 + ν12
λ

. (19)

Restriction (7)2 gives ν12
√
1 + ν21 = ν21

√
1 + ν12 and it is im-

mediate that ν12 = ν21 = ν, ν ≥ −1 in the problem at hand.
Calculating λ from the cost function leads to optimal distri-

bution E∗
1 = E∗

2 = E∗, E∗ = E∗(̺),

E∗(̺) =
E0 (γ

2 − 1)

4 ln γ

1

̺2
. (20)

Note that the “zero cost” structure is theoretically possible. In-
deed, setting E0 = 0 in the isoperimetric condition and making
use of (19) and (20) leads to the nontrivial, yet peculiar, character-
istics of the optimal material, namely ν = −1 and E1 = E2 = 0.
Optimal distribution of shear modulus. Set now m1 ≡ eϑ

and m2 ≡ e̺ in (17) and note that τ is a pure shear stress tensor.
Hence, ΦK = Φ0 = 0 in (14) and (15) thus Φ = ΦG(C, τ ).

With G12 ≡ G, the problem (PG) becomes

Y =

2π
∫

0

γ
∫

1

min
G≥0

Φλ(C, τ )a2̺ d̺ dϑ− λG0 π a2(γ2 − 1),

Φλ(C, τ ) =
τ0

4G̺2
+ λG. (21)

The necessary condition of optimality and the integral constraint
in the description of G give G∗ = G∗(̺),

G∗(̺) =
G0 (γ

2 − 1)

2 ln γ

1

̺2
. (22)

5. Remark

To compare the FMD and EMD approaches, let us note that
FMD optimizes C in all directions ω ∈ E2

s, while EMD limits
the search to ω=m⊗m (Young’s modulus); ω=mα ⊗mβ +
mβ ⊗mα (shear modulus) and ω=1 (bulk modulus).
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